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Abstract— This paper presents an original guidance system
for autonomous multi-rotor unmanned aerial vehicles (UAVs)
tasked with creating maps of environments while operating in a
tactical manner. An original algorithm is developed to produce
a sequence of goal points whose locations enable exploration
in a systematic or greedy manner, a path planner allows to
interpolate goal points while exploiting obstacles for shelter,
and a trajectory planner designed within the model predictive
control framework enables collision-avoidance and accounts for
the output feedback linearized dynamics, thrust saturation, and
attitude constraints. This system assumes no prior information
on the environment or threats, does not rely on external sources
of information, and is equipped with forward-facing cameras
to enable low altitude and indoor operations. Numerical simu-
lations validate the proposed guidance system.

I. INTRODUCTION

The problem of covering unknown environments using
UAVs has been addressed for multiple purposes, including
agriculture, mining, and civil engineering [1], [2]. However,
the use of UAVs to cover potentially hostile environments
has drawn less attention. These vehicles could provide useful
support to first responders in perilous contexts [3] due to their
payload capability and maneuverability. Of the publications
on this topic, we recall [4], where a modified logistic map
and a modulo tactic are used to generate unpredictable mo-
tion profiles, [5], where paths for teams of UAVs providing
continuous coverage and sustained situational awareness are
designed using an approach based on nonlinear program-
ming, and [6], where genetic algorithms produce reference
paths for heterogeneous fleets of UAVs flying at low altitude
in dynamic and hostile environments. The systems in [4]–
[6] propose path planners only, however, neglecting the
UAV’s dynamics reduces the vehicle’s ability to operate
in cluttered environments, and fast trajectory planners and
collision avoidance algorithms should be included to succeed
in support roles. However, many UAVs to be employed in
potentially hostile environments leverage external informa-
tion on both the location and the nature of the threats [5],
[6], and these assumptions severely limit or prevent the use
of these vehicles in completely unknown environments [1].

This paper presents an original guidance system for au-
tonomous multi-rotor UAVs tasked with mapping poten-
tially hostile environments, while flying at low altitudes
or indoors, comprises both a fast path planner and a fast
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trajectory planner, does not rely on a priori information
about the environment, and relies on forward-facing cameras
for navigation. The proposed guidance system implements
an explore-then-exploit approach [7], since its path planner
outlines a suitable strategy to cover a user-defined set, and
its trajectory planner enables the mapping process while
exploiting the vehicle’s dynamics [2].

In this paper, an original algorithm is presented for deduc-
ing a sequence of goal points to visit in order to cover an
environment. This algorithm relies on Octrees [8], and allows
the user to choose from a range of exploration behaviors. The
user may choose between a greedy behavior, where goals
lie in areas such that large amounts of new information
can be gained, or a systematic behavior, where goals lie
in areas so that exploration is enabled in a breadth-first
manner. In a systematic approach, however, full coverage
can be slow, and many back-and-forth motions are necessary,
which may undermine the system’s stealth objective [2].
An optimization-based path planning algorithm produces
sequences of waypoints connecting consecutive goal points.
This method of selecting goals and interpolating them is
designed to avoid traversing all or almost all voxels in the
voxel map, which is typically required by the boustrophedon,
rectangular spiral, or Hilbert paths popular in the coverage
literature [2], [9]. This approach may save time and effort
especially in emergency situations.

The trajectory planner is designed within the model pre-
dictive control (MPC) framework and produces reference
trajectories that interpolate the planned path. This planner’s
cost function captures the effort to control the UAV, the
importance of intercepting any waypoint in the planned path,
and the need to coast obstacles and seek shelter for tactical
purposes. The UAV’s dynamics are captured by the UAV’s
discrete-time output-feedback linearized equations of motion.
The trajectory planner enables collision avoidance and ac-
counts for the UAV’s nonlinear dynamics. In contrast with
the trajectory planner presented in [10], by employing barrier
functions, constraints on the attitude and each propeller’s
maximum thrust are imposed. A quadratic programming
framework is applied to solve the MPC problem in real time
[10].

To enable reliable operations in dangerous environments,
the path planner and trajectory planner allow the UAV to
exploit obstacles for shelter and regulate its acceleration in
response to its proximity to obstacles so that the chance of
being detected by potential threats is reduced; these abilities
enable tactical or stealthy motion planning. Conversely,
when the planners disregard proximity to known obstacles
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Fig. 1. A voxel map and its partitions Pi, i = 0, . . . , 9. Occupied
unexplored voxels are marked in gray, unoccupied and explored voxels are
marked with a pink boundary, and occupied explored voxels O are marked
in gray with a pink boundary.

(beyond collision-avoidance), it may enable reckless motion
planning. The need to attain a tactical, reckless, or mixed
motion plan can be set by tuning parameters.

II. A PATH PLANNER FOR TACTICAL COVERAGE

A. Notation

A voxel is a cube of user-defined dimensions. Let the
connected set V ⊂ R3 denote the union of nV ∈ N
congruent voxels that cover the environment to be mapped.
Each voxel in V is denoted by its center located at r̂p ∈ V ,
p ∈ {1, . . . , nV}. Let Vunexplored and Vexplored capture the
unexplored subset and the explored subset of V , respectively.
Let Voccupied capture the occupied subset of V , respectively.
The obstacles’ set O , Voccupied ∩ Vexplored comprises
voxels that are occupied and explored; the cardinality of
O is denoted by nO. The proposed system is only aware
of obstacles in O, and this set is produced only when the
UAV’s camera observes a voxel.

The set V is partitioned in nP rectangular parallelepipeds
Pi, i ∈ {1, . . . , nP}, such that Pi is the union of voxels,⋃nP
i=1 Pi = V , and Pi ∩ Pj = {∅} for all i, j ∈ {1, . . . , nP}

such that i 6= j. The barycenter of Pi, i ∈ {1, . . . , nP}
is denoted by r̂Pi

∈ Pi. Lastly, the smallest parallelepiped
containing V is denoted by P0.

The number of explored voxels in Pi, i = 0 . . . , nP , is
denoted by nexplored,Pi , the number of occupied voxels in Pi
is denoted by noccupied,Pi

, the number of unexplored voxels
in Pi is denoted by nunexplored,Pi

, and the length of the
smallest edge of Pi is denoted by `Pi,min. See Figure 1 for
an illustration of a partitioned voxel map.

The number of goal points is denoted by ng ∈ N, and is
incremented everytime a new goal is generated. The number
of waypoints generated by the path planner is denoted by
nw ∈ N. In general, nw is different for every pair of initial
positions and goal points, and depends on the resolution of
the voxel map. In the remainder of this paper, the integer q
counts the goal points and spans the interval {0, . . . , ng}, the
integer k counts the waypoints outlined by the path planner

Algorithm 1 Find goal points r̂P̃,q
1: Set q = 0
2: while ∃P̃i s.t.

nexplored,P̃i

nP̃i

< µ1 do
3: Execute Algorithm 2 to partition P0 in
{P1, . . . ,PnP}

4: Determine
{
P̃1, . . . , P̃ñP

}
5: Compute r̂Pprox

, r̂Pmax

6: Set r̂P̃,q according to (1)
7: Wait until r̂P̃,q is detected
8: q ← q + 1
9: end while

and spans the interval {0, . . . , nw−1} unless explicitly stated
otherwise.

B. Algorithms to Select Goal Points

The UAV’s reference path is computed iteratively after
identifying a sequence of goal points according to Algo-
rithm 1. The first step of Algorithm 1 is to partition P0

by employing Algorithm 2, which will be discussed later.
The next step is to find sufficiently unexplored partitions{
P̃1, . . . , P̃ñP

}
⊆ {P1, . . . ,PnP} such that

nunexplored,P̃i

nP̃i

≥
1−µ1, i = 1, . . . , ñP , where µ1 ∈ (0, 1) is user-defined. Fi-
nally, the UAV’s goal point r̂P̃,q , is defined as the barycenter

of the partition P̃ ∈
{
P̃1, . . . , P̃ñP

}
that is accessible to the

UAV and contains the point

µ2r̂Pprox + (1− µ2)r̂Pmax , (1)

where µ2 ∈ [0, 1] is user-defined, r̂Pprox denotes the barycen-
ter of the sufficiently unexplored partition that is closest
to the UAV along its direction of motion, r̂Pmax

denotes
the sufficiently unexplored partition containing the largest
number of unexplored voxels. Partitions and goal points are
recomputed as soon as the UAV’s navigation system maps
the voxel containing r̂P̃,q . If there is no partition whose ratio
of explored voxels to total voxels is smaller than µ1, then
the voxel map is considered sufficiently covered.

At each iteration of Algorithm 1, P0 ⊆ V is partitioned in
nP rectangular parallelepipeds according to Algorithm 2. In
Algorithm 2, if two sets of conditions are verified, then P0 or
any of its partitions are divided into smaller parallelepipeds,
whose aspect ratios are the same as the aspect ratio of P0.
The first set of these conditions requires that both the ratio
of explored voxels over the total number of voxels in Pi,
i = 0 . . . , nP , is smaller than the user-defined parameter
µ1 ∈ (0, 1) and the length of the smallest side of Pi is
larger than 2µ3, where µ3 > 0 is user-defined. The second
set of conditions requires that the number of explored voxels
in Pi, i = 0 . . . , nP , is larger than the user-defined parameter
µ4 ∈ N or the ratio of occupied voxels over the total number
of voxels in Pi is larger than the parameter µ5 ∈ (0, 1).

C. Numerical Solution of the Path Planning Problem

Given the sequence of goal points {r̂P̃,q}
ng

q=0, the proposed
path planning algorithm generates the UAV’s reference path
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Algorithm 2 Octree iterative algorithm to partition P0

1: Initialize P0 = minimum bounding box, nP = 1
2: if nexplored,P0

nP0
< µ1 then

3: Divide(P0)
4: end if
5: procedure DIVIDE(Pi)
6: Compute child parallelipipeds
7: nP ← nP + 8
8: for j = (nP − 7):nP do
9: if

nexplored,Pj

nPj
< µ1 and

`Pj ,min

2 ≥ µ3 then

10: if nexplored,Pj
≥ µ4 or

noccupied,Pj

nPj
≥ µ5

then
11: Divide(Pj)
12: end if
13: end if
14: end for
15: end procedure

as the sequence {r̂k}nw

k=0 ⊂ R3\O such that r̂0 is the UAV’s
position when the planner is initialized, and r̂nw

= r̂P̃,q+1.
The sequence {r̂k}nw

k=0 minimizes the cost function

fk,q , gk + hk,q, k ∈ {1, . . . , nw}, (2)

where

gk ,
k∑
p=1

[κ(d2(r̂p,O))d2(r̂p, r̂p−1)] (3)

denotes the cost-to-come function,

hk,q , µ8d2

(
r̂k, r̂P̃,q

)
(4)

denotes the heuristic function,

κ(α) ,

{
µ8 + 0.5(1− µ8)

[
1 + cos

2π(α−µ6)
µ7−µ6

]
, α ∈ [µ6, µ7],

1, α ∈ [0, µ6) ∪ (µ7,∞),
(5)

denotes the weighing function, and µ7 > µ6 > 0 and µ8 ∈
[0, 1) are user-defined parameters, and d2 : R3 × R3 → R
captures the distance between two points in R3. The cost
function (2) is the weighted sum of the length of the UAV’s
reference path, namely (3), and an under-estimate of the
Euclidean distance between the voxel occupied by the UAV
and the goal point r̂P̃,q , namely (4).

The role of the function κ(·) is to encourage tactical
behaviors by rewarding paths that are closer to the obstacles’
set O. The minimum of this continuous function is equal
to µ8 and its minimizer is given by α = (µ6 + µ7)/2.
Consequently, smaller values of µ8 increase the attractiveness
of the obstacles’ set and induce a more tactical behavior.
Additionally, κ(α) < 1, α ∈ [µ6, µ7], therefore, [µ6, µ7]
is a measure of the region of influence of the obstacles’ set.
Additionally, the parameter µ6 can be used to impose a safety
margin.

The UAV’s reference path {r̂k}nw

k=0 can be deduced by any
heuristics-based search algorithm over graphs, such as, for
instance, LPA∗ [11], by finding minimizers of (2) subject to

the constraint of allowing the UAV to move across adjacent
unoccupied voxels. Since µ8 scales the distance between the
UAV’s current position and the next goal point r̂P̃,q , in (4),
and κ(α) ≥ µ8 for all α ≥ 0, by the triangle inequality, hk,q
is a consistent heuristic function. In this paper, the LPA∗

algorithm is selected to solve the path planning problem.
See [12, Ch. 3] for a discussion and analysis of the benefits
of LPA∗.

III. A TRAJECTORY PLANNER FOR TACTICAL COVERAGE

A. Notation

Time is denoted by t ≥ 0. Third-order derivatives with
respect to time are denoted by (·)(3). We assume that the
UAV is able to fly from r̂k to r̂k+1 in nt∆T time units,
where both nt ∈ N and ∆T > 0 are user-defined parameters
capturing the length of the planning horizon. Let νs,k ∈
{1, . . . , nw − k} denote the user-defined path stride. The
integer i ∈ {0, . . . , ntνs,k} is employed to count segments
of MPC’s time horizon, the integer j ∈ {i, . . . , ntνs,k}
is employed to capture the time step j∆T in the interval
[i∆T, nt∆T ] unless otherwise stated.

The UAV’s position is captured by rk : [0, nt∆T ] →
R3 \ O, expressed in a conveniently located inertial refer-
ence frame I. The UAV’s roll angle is denoted by φk :
[0, nt∆T ] →

(
−π2 ,

π
2

)
, k ∈ {0, . . . , nw − 1}, the UAV’s

pitch angle is denoted by θk : [0, nt∆T ] →
(
−π2 ,

π
2

)
,

the UAV’s yaw angle is denoted by ψk : [0, nt∆T ] →
[0, 2π), the UAV’s velocity with respect to I is denoted
by vk : [0, nt∆T ] → R3, the UAV’s angular velocity
with respect to I is denoted by ωk : [0, nt∆T ] → R3,
and the UAV’s state vector is denoted by xk(j∆T ) ,[
rTk (j∆T ), φ(j∆T ), θ(j∆T ), ψ(j∆T ), vTk (j∆T ), ωT

k (j∆T )
]T.

Let η1,k : [0, nt∆T ] → R, denote the total thrust force’s
virtual control input, the total thrust force produced by the
UAV’s propellers is defined as u1,k(t), t ∈ [0, nt∆T ], and[
u̇1,k(t)
ü1,k(t)

]
=

[
0 1
0 0

] [
u1,k(t)
u̇1,k(t)

]
+

[
0
1

]
η1,k(t),[

u1,k(0)
u1,k(nt∆T )

]
=

[
u1,0,k

u1,f,k

]
, t ∈ [0, nt∆T ]. (6)

The roll moment produced by the UAV’s propellers is
denoted by u2,k(·), the pitch moment produced by the
UAV’s propellers is denoted by u3,k(·), and the yaw mo-
ment produced by the UAV’s propellers is denoted by
u4,k(·). The UAV’s control input is defined as uk(t) ,
[u1,k(t), u2,k(t), u3,k(t), u4,k(t)]

T, t ∈ [0, nt∆T ]. The vec-
tor of thrust forces produced by each propeller is defined
as

Tk(t) ,MT,uuk(t), t ∈ [0, nt∆T ], (7)

where the ith component of Tk(·), i = 1, . . . , 4, namely
Ti,k : [0, nt∆T ]→ [0,∞), denotes the thrust force produced
by the ith propeller, and MT,u is the UAV’s mixer.
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B. Output-Feedback Linearized Equations of Motion
Neglecting the aerodynamic drag, the inertial counter-

torque, and the gyroscopic effect [13], the UAV’s equations
of motion are given by

ṙk(t) = vk(t), rk(0) = rinit,k, t ∈ [0, ntνs,k∆T ], (8a)

v̇k(t) = m−1R(φk(t), θk(t), ψk(t))[0, 0, u1,k(t)]T

− [0, 0, g]T, rk(ntνs,k∆T ) = rend,k, (8b)φ̇k(t)

θ̇k(t)

ψ̇k(t)

 = Γ−1(φk(t), θk(t))ωk(t),

φk(0)
θk(0)
ψk(0)

 =

φ0,k

θ0,k

ψ0,k

 ,
(8c)

ω̇k(t) = I−1

u2,k(t)
u3,k(t)
u4,k(t)

− ω×k (t)Iωk(t)

 ,

φk(ntνs,k∆T )
θk(ntνs,k∆T )
ψk(ntνs,k∆T )

 =

φf,k

θf,k

ψf,k

 , (8d)

where R(φk, θk, ψk), (φk, θk, ψk) ∈
(
−π2 ,

π
2

)
×
(
−π2 ,

π
2

)
×

[0, 2π), is a 321 rotation sequence of Tait-Bryan angles
capturing the UAV’s attitude relative to the inertial reference
frame I, and Γ(φk, θk), (φk, θk) ∈

(
−π2 ,

π
2

)
×
(
−π2 ,

π
2

)
is

the Jacobian of the rotational kinematics [14, Ch. 2].
In this paper, we are interested in controlling directly

the UAV’s position rk(·) and its yaw angle ψk(·) since the
cameras’ focal axes are aligned with the UAV’s roll axis.
Thus, setting

[
rT
k (t), ψk(t)

]T
, t ∈ [0, ntνs,k∆T ], as the

measured output, and proceeding as in [15, Prop. 5.1.2],
we verify that the dynamical system given by (8) and (6)
has vector relative degree {4, 4, 4, 2}, and the UAV’s output-
feedback linearized equations of motion are

χ̇k(t) = Ãχk(t) + B̃λk(t), t ∈ [0, ntνs,k∆T ], (9)

where χk(t) ,
[
rT
k (t), ṙT

k (t), r̈T
k (t), r

(3)T
k (t), ψk(t), ψ̇k(t)

]T
,

λk ∈ R4 denotes a virtual control input, Ã ,

blockdiag(Ãr, Ãψ), B̃ ,
[
B̃T
r , B̃

T
ψ

]T
,

Ãr ,


03×3 13 03×3 03×3

03×3 03×3 13 03×3

03×3 03×3 03×3 13

Ar,0 Ar,1 Ar,2 Ar,3

 ∈ R12×12, (10)

Ãψ ,

[
0 1

Aψ,0 Aψ,1

]
∈ R2×2, (11)

are Hurwitz, Ar,i ∈ R3×3, i ∈ {0, . . . , 3}, Aψ,0 ∈ R, and
Aψ,1 ∈ R are user-defined,

B̃r ,

[
09×4

Br

]
∈ R12×4, B̃ψ ,

[
0
Bψ

]
∈ R2×4 (12)

and the pairs (Ãr, B̃r) and (Ãψ, B̃ψ) are controllable.
It follows from (9) that the discrete-time, linearized, zero-

order hold [16], output-feedback linearized equations of
motion of a quadcopter UAV are given by

χk((j + 1)∆T ) = Aχk(j∆T ) +Bλk(j∆T ), (13)

where A = eÃ∆T and B =
∫∆T

0
eÃσdσB̃. Equation

(13) captures equality constraints for the MPC algorithm
employed to outline tactical reference trajectories for UAVs.

Given λk(j∆T ), the total thrust force’s virtual control
input η1,k(j∆T ), the roll moment produced by the UAV’s
propellers u2,k(j∆T ), the pitch moment u3,k(j∆T ), and the
yaw moment u4,k(j∆T ) are computed as

[η1,k(j∆T ), u2,k(j∆T ), u3,k(j∆T ), u4,k(j∆T )]T = ζk(j∆T ),
(14)

where

ζk , G(rk, φk, θk, ψk, ωk, u1,k)

(
− f(rk, φk, θk, ψk, ωk, u1,k)

+

[
Ar,0rk(t) +Ar,1ṙk(t) +Ar,2r̈k(t) +Ar,3r

(3)
k (t)

Aψ,0ψk(t) +Aψ,1ψ̇k(t)

]
+

[
Br
Bψ

]
λk

)
,

(15)

for all (rk, φk, θk, ψk, ωk, u1,k, λk) ∈ R3 ×
(
−π2 ,

π
2

)
×(

−π2 ,
π
2

)
× [0, 2π)×R3 ×R×R4; expressions for f(·) and

G(·) are omitted for brevity and can be found by applying
Proposition 5.1.2 of [15], and are recomputed at every time-
step. Note that λk(·) is the input of the virtual system (9), and
ζk(·) is the input of the real system (8a)–(8d). The discrete-
time zero-order hold counterpart of (6) is

δk((j + 1)∆T ) =

[
1 1
0 1

]
δk(j∆T ) +

1

2

[
∆T 2

2∆T

]
η1,k(j∆T ). (16)

Finally, the thrust force produced by each propeller is
computed by applying (7).

C. Constraints on Collision Avoidance and Yaw Angle

An affine constraint set, which contains the UAV and
excludes all obstacle points, is captured by

Fr,k(i∆T )rk(i∆T ) ≤≤ fr,k(i∆T ), (17)

where ≤≤ denotes the component-wise inequality, and Fr,k :
R → Rncoll×3 and fr,k : R → Rncoll can be deduced from
a voxel map of the environment by proceeding as in [10].
Constraints on the UAV’s yaw angle are captured by

Fψ(i∆T )ψk(j∆T ) ≤≤ fψ,k(i∆T ), (18)

where Fψ(i∆T ) , [−1, 1]
T, fψ,k(i∆T ) ,

[ψmax − ψf,k, ψmax + ψf,k]
T. The MPC algorithm searches

reference trajectories that verify (13), (17), and (18).

D. Cost Function Definition

The proposed trajectory planner produces reference trajec-
tories that minimize the cost function

J̃ [rk(0), ψk(0), λk(·)]

,
k+νs,k−1∑
l=k

νl−kdis `f(rl(nt∆T ), ψl(nt∆T ))

+

k+νs,k−1∑
l=k

nt−1∑
i=0

νl−kdis
˜̀(i∆T, rl(i∆T ), ψl(i∆T ), λl(i∆T )),

(19)
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where νdis ∈ (0, 1),

˜̀(τ, rk, ψk, λk) ,

[
r̃k
λk

]T

R̃k(τ)

[
r̃k
λk

]
+ qψ(ψk − ψf,k)2

+ q̃T
r r̃k + q̃T

λ λk,

(τ, rk, ψk, λk) ∈ [0, ntνs,k∆T ]× R3 × R× R4, (20)

`f(rk, ψk) ,
(
rk − r̂k+νs,k

)T
Rr,f

(
rk − r̂k+νs,k

)
+ qψ(ψk − ψf,k)2, (21)

R̃k(τ) , g−1
barrier,k(τ)

[
R̃r R̃r,λ
R̃T
r,λ Rλ

]
, R̃r ∈ R3×3 is sym-

metric, R̃r,λ ∈ R3×4, and Rλ ∈ R4×4 is positive-definite
and such that R̃r − 2R̃T

r,λR
−1
λ R̃r,λ > 0, q̃r ∈ R3, q̃λ ∈ R4,

qψ > 0,

r̃k(i∆T ) , (1− µ13)fsat (µ14(r̂k − rO))

· [rk(i∆T )− rO] + µ13

[
rk(i∆T )− r̂k+νs,k

]
, (22)

µ13 ∈ (0, 1] and µ14 > 0 are user-defined, fsat(w) ,
sat (‖w‖)
‖w‖

, w ∈ Rn, rO , d2(r̂k,O), and Rr,f ∈ R3×3

is symmetric and nonnegative-definite,

gbarrier,k(j∆T ) ,
[
φ2

max − φ2
k(j∆T )

] [
θ2

max − θ2
k(j∆T )

]
·

4∏
p=1

[Tp,k(j∆T )− Tmin]

4∏
p=1

[Tmax − Tp,k(j∆T )] , (23)

and φmax ∈
(
0, π2

)
is the maximum roll angle, θmax ∈

(
0, π2

)
is the maximum pitch angle, and 0 < Tmin < Tmax are user-
defined minimum and maximum thrust forces.

As discussed in Section III-E, boundary conditions are
enforced for the trajectory planning problem at the waypoint
r̂k+νs,k . Thus, the reference trajectory is not imposed to
traverse the waypoints r̂k+1, . . . , r̂k+νs,k−1. The cost func-
tion (19) captures the need to outline a reference trajectory
that approximates the waypoints r̂k+1, . . . , r̂k+νs,k−1. The
term νl−kdis , in (19) is a discount factor applied to the
objective function so that, while the UAV approaches r̂k+1,
the influence of r̂k+2, . . . , r̂k+νs,k on the cost function is less
marked.

The Mayer’s function (21) captures the UAV’s need to
reach the waypoint r̂k+νs,k , and point its roll axis toward
this waypoint. The first term on the right-hand side of (22)
captures the UAV’s distance from r̂k+νs,k , and the second
term on the right-hand side of (22) captures the UAV’s
distance from the obstacles.

The Lagrangian function (20) captures the UAV’s compet-
ing needs of reaching the waypoint r̂k+νs,k , and coasting the
obstacles’ set, while pointing the onboard cameras toward
r̂k+νs,k . Indeed, if µ13 = 1, then r̃k(i∆T ) = rk(i∆T ) −
r̂k+νs,k , i ∈ {0, . . . , ntνs,k−1}, and minimizing (19) induces
a reckless behavior in the UAV, since its only goal is to reach
the waypoint, and if smaller values of µ13 ∈ (0, 1) make
coasting the obstacles’ set a higher priority. The function
fsat(·) in (22) reduces the attractive effect of obstacles at a
distance from the waypoint r̂k, that is larger than µ−1

14 .
See [12, Ch. 3] for a discussion on the impact of gbarrier(·).

E. Boundary Conditions

The conditions on the UAV’s final position must be set
to ensure that the reference trajectory traverses the waypoint
r̂k+νs,k . The condition on the UAV’s final acceleration are
defined so that r̈end,k = âk+νs,k and

âk+νs,k , â
(
d2(r̂k+νs,k ,O)

)
d̂k, (24)

where

â(α) ,


0, if α ∈ [0, µ15],
µ17

µ16−µ15
(α− µ15), if α ∈ [µ15, µ16],

µ17, otherwise,
(25)

d̂k , µ18d̄(r̂k+νs,k) + (1− µ18)d̄(r̂k+νs,k+1), (26)

and µ15, µ16, µ17 > 0 and µ18 ∈ [0, 1] are user-defined, and
d̄(r̂n) captures the direction of the line joining r̂n and r̂n−1.

If d2(r̂k+νs,k ,O) ≤ µ15, that is, if the UAV is sheltered by
an obstacle at a distance smaller than µ15, then ‖r̈end,k‖ = 0,
since it is desirable for the UAV to maintain its speed while
operating near shelter as it passes through the waypoint.
Alternatively, if d2(r̂k+νs,k ,O) ∈ [µ15, µ16], then ‖r̈end,k‖
is set to increase as a linear function of d2(r̂k+νs,k ,O) from
0 to µ17. Finally, if d2(r̂k+νs,k ,O) > µ16, that is, if the UAV
is too far from any obstacle to be considered as sheltered,
then ‖r̈end,k‖ = µ17, so the UAV will accelerate and use its
speed to avoid detection or interception. If µ18 = 1, then
r̈end,k, is set to point in the direction joining the waypoint
r̂k+νs,k and r̂k+νs,k−1. Alternatively, if µ18 = 0, then r̈end,k,
is set to point in the direction joining the waypoint r̂k+νs,k ,
which is the trajectory’s endpoint, and r̂k+νs,k+1 the next
trajectory’s endpoint.

F. Numerical Solution of the Trajectory Planning Problem

In this paper, the pair (χk(j∆T ), λk(j∆T )) is computed
as minimizers of the cost function (19) subject to (13),
(17), and (18) by applying the framework presented in
[10]. A difference with [10] is that in this work, the cost
function underlying the trajectory planner is a function of
time due to the barrier function used to impose constraints
on the thrust, pitch and roll angles. Thus, the quadratic
programming algorithm to compute reference trajectories
needs to be updated at each time step.

IV. NUMERICAL SIMULATIONS RESULTS

Two simulations were performed to validate the system
with different settings in a simulated indoor environment;
see Figures 2 and 3 for details. A simulated camera fixed to
the UAV’s position and aligned with its roll axis observes the
environment. In the first simulation, the proposed guidance
system is set to induce a tactical behavior and greedy goal
selection. Furthermore, the proposed goal selection algorithm
was set to instill a greedy behavior, and less backand- forth
motion is evident. In the second simulation, the proposed
guidance system is set to induce reckless guidance and
systematic goal selection. Furthermore, the goal selection
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TABLE I
TABLE LISTING QUANTITIES FROM THE TWO SIMULATIONS.

Parameter Sets Sim. 1 Sim. 2
Avg. dist. from O [m] 1.02 ± 0.94 3.92 ± 2.78

Dist. traveled [m] 221.85 129.57
Time [s] 363.65 306.52

Expl. rate [voxels/s] 445.87 531.58

Fig. 2. Results from simulation 1 with tactical guidance and greedy goal
selection parameter sets.

algorithm was set to instill a systematic behavior, and back-
and-forth motion is prevalent which may exacerbate the vehi-
cle’s vulnerability to detection. Notably, in both simulations,
the UAV must map at least 97% of the assigned volume, that
is, we set µ1 = 0.97.

Table I lists key information about the two simulations.
Tactical and greedy settings induce longer trajectories, longer
mission times, and slower mapping rates than reckless and
systematic settings, However, tactical and greedy settings
induce the UAV to travel considerably closer to the obstacles’
set O, and, hence, the UAV shows a safer behavior.

Both in Figure 2 and in Figure 3, a color map indicates
the projection of Vexplored onto the horizontal plane of
the three-dimensional plot. It is apparent how, following a
tactical trajectory, the assigned volume is almost completely
covered. Following a reckless trajectory, the UAV only needs
to travel from the South-East quadrant, to the center, then to
South-West, then to North-East, and finally to North-West to
complete its mission.

V. CONCLUSION

This paper presented a novel guidance system for au-
tonomous multi-rotor UAVs employed to cover unknown
areas, while implementing several tactics to minimize the
risk of exposure to unknown, potential threats. These tactics
include exploring obstacles to seek shelter and proceeding
more slowly in safer areas, such as in proximity of obstacles;
which are enabled through a path planner and trajectory
planner. Numerical simulations showed the applicability of
the proposed system in a simulated indoor space with no a
priori knowledge of the environment.
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