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Abstract

This chapter presents the first robust model reference adaptive control (MRAC)
system for hybrid, time-varying plants affected by parametric, matched, and
unmatched uncertainties as well as uncertainties in the plant’s discrete-time dynamics.
This continuous-time component of this MRAC system comprises both an adaptive
law and a control law that are analogous to the adaptive law and control law of
classical MRAC systems. The discrete-time component of the proposed MRAC system
comprises a resetting mechanism that counters the effect of resetting events in the
plant dynamics. The mechanisms that guarantee robustness to unmatched uncer-
tainties extend the well-known ¢-modification and e-modification of MRAC as well as
the use of continuous projection operators to a hybrid systems framework. This
adaptive control framework is applied to the problem of controlling output-feedback
linearized dynamical models while switching among multiple feedback-linearizing
output signals according to any user-defined algorithm that is compatible with the
conditions sufficient for the existence of the linearizing diffeomorphism. As an exam-
ple, we solve the problem of controlling the dynamics of a quadcopter unmanned
aerial vehicle (UAV) tasked with following both a user-defined trajectory and a user-
defined attitude, and not just a user-defined yaw angle as it occurs in the overwhelm-
ing majority of works on this topic.

Keywords: hybrid dynamical systems, robust model reference adaptive control,
output-feedback linearization, uncertain systems, quadcopters

1. Introduction

This chapter presents the first robust model reference adaptive control (MRAC)
system for hybrid plants affected by parametric, matched, and unmatched uncer-
tainties. Hybrid plants comprise dynamical models of processes that can be captured
by means of both differential and difference equations. Differential equations allow
describing continuous-time phenomena, whereas difference equations allow describ-
ing discrete-time phenomena. Examples of such plants include mechanical systems,
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whose continuous-time dynamics experience instantaneous variations due to external
solicitations, elastic effects, or sudden variations in the characterizing parameters such
as friction coefficients [1, 2]. Additional examples of such plants include those sys-
tems, whose dynamics are affected by continuous-time effects, both exogenous, such
as disturbances, and endogenous, such as control inputs, as well as by discrete-time
effects, such as decision variables drawn from a countable set of possible choices [3].
The proposed MRAC system is proven to be robust to uncertainties in both the plant’s
continuous-time dynamics and in its discrete-time dynamics.

The proposed results extend the results presented in [4], which propose the first
MRAC system for nonlinear hybrid plants, whose dynamics are affected by matched
and parametric uncertainties, to the case wherein the plant dynamics are affected by
unmatched uncertainties as well. This extension has been possible by leveraging the
first generalization of the LaSalle-Yoshizawa theorem to prove the pre-attractivity of
compact sets for nonlinear, time-varying, hybrid systems. Furthermore, this chapter
extends for the first time classical results such as the e-modification of MRAC [5], the
o-modification of MRAC [6], and the use of continuous projection operators [7] to
nonlinear, time-varying, uncertain hybrid plants. Specifically, the proposed MRAC
system robustifies the results in [4] with mechanisms that are analogous to the afore-
mentioned classical robustifications of MRAC, while retaining its peculiar resetting
mechanism of the reference model’s dynamics. Such a mechanism, which is impossi-
ble to deduce applying classical Lyapunov-like sufficient conditions predicated
assuming continuity of the system’s dynamics with respect to time and Lipschitz
continuity with respect to the state, allows the state of the reference model to instan-
taneously reduce the trajectory tracking error and ease its convergence to zero. The
time at which these resetting events in the reference model occur is computed as the
time at which the energy injected into the controlled system by the uncertain discrete-
time dynamics exceeds the energy dissipated by the control system’s continuous-time
dynamics.

The application of the proposed robust hybrid MRAC system is unique and opens
the way to new research ideas in the context of output-feedback linearization [8].
Indeed, the proposed adaptive control system is applied to regulate output-feedback
linearized dynamical systems, whose measured output, which defines the feedback-
linearizing diffeomorphism, is arbitrarily switched by the user over a countable set of
alternative options. To illustrate this idea, we consider the problem of controlling a
quadcopter UAV by means of an output-feedback linearizing system, which serves as
a baseline controller, and a robust MRAC system to improve the tracking performance
despite uncertainties and disturbances. The overwhelming literature on the control of
quadcopter UAVs by means of output-feedback linearization consider only one
measured output, namely, the UAV’s position and yaw angle; see [9-11] for some of
the latest references on this topic of a conspicuous list. To the authors’ knowledge,
alternative output functions, such as the UAV’s position and any of the other two
Euler’s angles, which are commonly available for measurement using any commercial-
off-the-shelf autopilot, such as those based on PX4 [12] or Ardupilot [13] to name two
of the most popular ones, are not considered. The reasons for this choice substantially
stem from the fact that output-feedback linearization with respect to the vehicle’s
position and yaw angle only requires a non-zero total thrust at all times, which is
realistic in most problems of practical interest, where free fall of the UAV is not
required. Output-feedback linearization with respect to the vehicle’s position and
either pitch or roll angle requires additional constraints on the vehicle’s attitude,
which do not allow hovering and pose challenges in near-equilibrium maneuvers.
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Furthermore, most applications considered so far can be performed by simply tasking
the UAV to follow some user-defined trajectory for its center of mass and some yaw
angle. Indeed, onboard vision-based sensors, such as cameras or Lidars, are generally
aligned with the UAV’s roll axis and quadcopter UAVs usually operate in near-hover
conditions. The proposed idea of using a hybrid MRAC system to regulate the
feedback-linearized equations of motion of a quadcopter UAV allows the user to
arbitrarily choose the measured output and control all six of the UAV’s degrees

of freedom by cycling through multiple output functions, and not only four

degrees of freedom, as it occurs in existing control architectures for this class of
aerial robots.

Numerical simulations prove the effectiveness of the proposed robust hybrid
MRAC framework and its applicability to a variable output-feedback linearizing
framework. Numerical evidence also shows how the proposed user-defined reference
trajectory, yaw, pitch, and roll angles are impossible to follow without the proposed
hybrid framework.

This chapter is structured as follows. In Section 2, we present the notation used in
this chapter. In Section 3, we present a sufficient condition on the pre-attractivity of
compact sets for nonlinear, time-varying hybrid plants. Section 4 illustrates the first
key result of this chapter, namely a robust MRAC system for hybrid plants. Succes-
sively, the equations of motion of a quadcopter UAV are recalled in Section 5. Section
6 presents the second key result of this chapter, namely the application of the pro-
posed adaptive hybrid system control framework to the feedback-linearized equations
of motion of a quadcopter UAV. In Section 7, we discuss the applicability and the
features of the proposed results by means of a numerical example. Finally, Section 8
draws conclusions and outlines future work directions.

2. Mathematical notation

Let N denote the set of positive integers, R the set of real numbers, R" the set of n x 1
real column vectors, and R"*™ the set of n x m real matrices. The interior of the set S CR"
is denoted by S, the boundary of S CR" is denoted by d€, and the closure of S is
denoted by S. The open ball of radius p > 0 centered at x € R” is denoted by ,(x).

The transpose of BE€ R ™ is denoted by BT, and the zero vector in R” is denoted by
0, or 0, the zero n x m matrix in R**™ is denoted by 0,,, or 0, and the identity matrix
in R"*" is denoted by 1,. The diagonal matrix whose entries are give by x1, ...,x, is
denoted by diag(x1, ...,x,). The block-diagonal matrix formed by M; € R"*",
i=1,..,p,is denoted by M = bloc1<diag(M1, ,Mp). The distance between the point
x €R" and the set S is denoted by dist(x, S) ([14], p. 16). We write || - || for the
Euclidean vector norm and the corresponding equi-induced matrix norm ([15],

Def. 9.4.1).

3. A sufficient condition on uniform pre-attractivity of compact sets

In this section, we recall elements of hybrid systems theory, which are essential to
our discussion and recall the first extension of the LaSalle-Yoshizawa theorem to time-
varying, nonlinear, hybrid dynamical system. Time-varying, hybrid dynamical sys-
tems can be captured by
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x(t) =f.(,x(), (&x(t) €D, (1)
x(t+> :gd(t’x(t»’ (t,x(t)) €D, (2)

with x(¢9) = x¢ and initial time ¢ € [0, o0). Let Z CRR" be an open set such
that 0 € Z. The flow map, f . : [to, ) x Z — R" is Lebesgue integrable, locally
bounded, and such thatf (¢, 0,) = 0, for all € [to, o0). The jump map g, : [to, o0) x
2Z — R” is continuous and locally bounded. A resetting event occurs
whenever (z,x(¢)) € D for some t >t(. The resetting time before t >t is defined as
tEmin{t>1t, 1 : (¢6,5(t, 4, 1,%¢_1)) & D} forallk €N, where s : [tg, 00) X [0,00) X Z —
Z denotes the flow of solutions of (1) and (2). The system (1) and (2) is assumed to be
left-continuous ([16], Def. 12.1). We also assume that (¢9,x0) & D. The case whereby
(to,x0) € D can be addressed applying similar arguments. In this chapter, we consider
Krasovskii solutions of (1) and (2) [17] and make the following assumption to avoid
beating, that is, to prevent solutions of (1) and (2) from incurring into the same
resetting event multiple times in zero time.

Assumption 3.1 Consider the system given by (1) and (2). If (t,x(¢)) € D\D,
then there exists ¢ > 0 such that, for all 6€ (0, ¢), s(t + 6,¢,x(¢)) & D Furthermore,
if (tp,x(t)) € 0DND, then there exists £ > 0 such that, for all § € (0, ¢),
s(tk + 5,tk,x(t,j)) & D.

The following result provides a sufficient condition for uniform boundedness and

the convergence of complete solutions of (1) and (2) to a compact set. To state this
result, letx : [tp, ) — Z denote a solution of (1) and (2). Furthermore, let V :
[to,0) X Z — R be absolutely continuous over compact intervals of [tg, o) not
containing resetting times in their interior for each x € Z, and, for each ¢ € [ty, o),
Lipschitz continuous and regular over Z; for the definition of regular functions and the
notion of derivative of regular functions, see ([18], pp. 63-64; [19], p. 39; and [20]).

Let W : Z — R be absolutely continuous and nonnegative definite. Let #;, € [to, =),

k€N, such that 7y = tg, f; = t, if Zj:f [V(t;“,x(t;’)) — V(t]x(t]))} >0, keN\{1},
along a solution of (1) and (2), then

t k—1
fe = inf{te lt0, o0) : J W(x(z))dr > Z[v@,x@)) - V(tj,x(tj))} } 3)
to j=

and if Zj:ll [V(tj*,x(t]*)) — V(tj,x(tj))} <0, then 7, = t;. Finally, the critical times

are defined as
i’ké max{tk, fk} (4)

Theorem 1.1 ([4], Th. 2) Consider the hybrid, time-varying, nonlinear dynamical
system given by (1) and (2), and assume that all solutions of (1) and (2) are complete.
Let V : [tg, o) x Z — R be absolutely continuous in its first argument over compact
intervals of [tg, o) C R, that do not contain resetting times in their interior for each
x € Z and Lipschitz continuous and regular in the second argument for each t € [t¢, o).
Assume that#, <t; forallkeN, > 7, [V}, x(t])) — V(tr, x(t2))] exists and is finite,
and

Wi(x) <V(t,x) <W;(x), (t,x)€ [to, o) X Z, (5)
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V(t,x) < — W(x), (t,x) & ([to, ) x (2\A))nD, (6)

where W1, W, : Z — R are positive-definite, AcC Zis compact and such that
0OcAand W: Z — Ris continuously differentiable on Z\{0, }, nonnegative-
definite, and such that W (x) > 0 for all x € 2\ A. Let »> 0 and ¢ > 0 be such that
B,(A)c Zandc< minxeaﬁ,(ﬁ) Wi(x). Iif x(t0) € {x €B,(A) : W1(x) <c}, then every
maximal solution x(¢), £ >, of (1) and (2) is bounded uniformly in {t;}, . and such
that lim,_ .. dist (x(t), .7[) = 0 uniformly in {#;}, .. Additionally, if Z = R” and both
W;(-) and W5(-) are radially unbounded, then every maximal solution x(-) of (1) and
(2) is uniformly bounded in {t; }, . and such that lim,_...dist(x(t), .4) = 0 for all
xo € R" uniformly in {t; }, .5.Theorem 1.1 provides Lyapunov-like sufficient condi-
tions on the local and global uniform pre-attractivity of the compact set A ([21],
Def. 7.1), that is, on the property whereby complete solutions of (1) and (2) converge
to A. This result extends a notorious theorem for uniform ultimate boundedness

([22], Def. 4.6) of nonlinear time-varying dynamical systems that are continuous in
time and Lipschitz continuous in the state vector, namely Theorem 4.18 of [22].

4. Robust model reference adaptive control for hybrid systems

This section presents the first key contribution of this chapter, namely present the
first MRAC system robust to parametric, matched, and unmatched uncertainties.
Section 4.1 outlines the plant and reference model dynamics. Section 4.2 presents
three robust control systems, which extend the classical e-modification of MRAC [5],
the o-modification of MRAC [6], and the use of continuous projection operators [7] to
hybrid plants. Finally, Section 4.3 leverages the results of Section 3 and proves the
effectiveness of these control systems.

4.1 Plant and reference model dynamics

In this section, we present multiple robust MRAC schemes for nonlinear, time-
varying, hybrid plants with modeling and parametric uncertainties, and uncertainties
in the resetting events. To this goal, consider the plant model

r(t)] _ | Aowx(®) + Bog |:u(t)+®:(t)q~)a(t)(t’x(t)):|
() 0 7)
Eon) (B x(t x
+ %“], [it;]:[ ] (t,%(£)) & Doy
ol\lg (o)
[’“ﬁ)]— tx(0),  (t.x(1) €D (®)
o(t+) =8d,6(0)\L>X1))s X o(t)>

where x, : [tg, 00) — R” denotes the plant state, o : [tg, o) — X denotes the mode,
X c N comprises the first o, positive integers, the piecewise continuous function # :
tg, 00) — R™ denotes the control input, A, € R"*", 6 € %, is unknown, the mapping

oA, is unknown, B, € R"*™ is known, the pair (A,, B,) is controllable, 0, e RN ig
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unknown, the mapping 60, is unknown, the regressor vector @, : [tg,o0) X R" — RNe
is Lipschitz continuous and known, &, : [tg, ) — R” is unknown, piecewise continu-
ous, and such that ||, (t)| <&, max > &5, max = 0 is known, the mapping 6—¢&,(-) is
unknown, and the mapping 6—¢, .., is known. The i-th resetting time of the reset-
ting event D,, ,, (i,0) €N X X is given by

tplant,i = min{t > tplant,i—l : (t: S6i4 (ta tplant,i—l: Xi,1)) é Do,-_l }, (9)

where {6;_1};cn CZ, 5o, (> Eplant,i—1, Xi—1) denotes the flow of the plant (7) and (8)
originated by the D,, , resetting event at time #pane,;—1 and from the initial condition
xi_1. In this chapter, the jump map gd’6(~, -), 6 €Z, is known and uncontrollable, and
the resetting events {D,} s C [to, o) x R" are unknown. We also assume that, with
any piecewise continuous control input «(-), (7) and (8) verify Assumption 3.1. In
problems involving mechanical systems subject to elastic collisions, Assumption 3.1 is
verified if collisions do not occur in arbitrarily small time intervals, which is a realistic
modeling assumption.

Next, consider the reference model

Xref (t) - Aref,a(t)xref (t) + Bref,o(t)V(t) Xref (tO) B Xref,0
&(t) 0 T e(to) oo | (10)
(t: Xref (t>) & Dref,a(z‘) >
Xref th
G(t(+) ) = gd,ref,g(t) (ta Xref (t) ) 5 (t, Xref (t)) € Dref,a(t) 5 (11)

where A,.¢, €R"", 6 €Z, is Hurwitz and such that
Ao =As +B.Ky, (12)
for some K, , € R"*™, Byer,, € R"*™ is such that
Bief,o = B.K}, (13)

for some K, , € R"*™, and the reference command input r : [ty, o0) — R™ is piece-
wise continuous and bounded. The reference model’s dynamics capture the desired
closed-loop system’s dynamics. The jump map g4 ¢ ,(*, -) and the set of resetting
events {Drefﬁ}a < are presented in the following. The matching conditions (12) and

(13) signify that, for each mode, the reference model dynamics can be mimicked by
the controlled plant dynamics.

4.2 Control system outline
Our goal is to derive adaptive control laws to steer the trajectories of (7) and (8)

toward the trajectories of the reference model (10) and (11), despite uncertainties in
the plant model. To this goal, let

e(t)2x(t) — xpet(t), t2to, (14)
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denote the trajectory tracking ervor. Furthermore, define

D, (t,x)= [xT VT(t) é:(t,x),r, (6,t,x) EX X [tg, ) x R”, (15)
0,2 [KEG,K;FG,(:)G]T, (16)
_ A T T T
By (t,)2 15, () 0T (6,5), s 3, () O] ()| (17)
oz ef, .., @HT, (18)

and N22n +m + > ?_,N,, and note that

[é@ [ Autotoeld) + B [it) — 071, <t>>}]
6(t) 0
éa t) ] [ tO [ — Xref,0 ] (19)
+ )
0 to
((t’x /\ <t xref ¢Drefa )
g 60D a5
G(t+> d,o(t) \"> d,ref,o(z) \">7're > (20)

((t’ x(t)) € Da(t) ) \4 ((t’ Xref (t)) € Dref,o(t)) )

where A represents the operator and, V represents the operator or, Z; CZ
denotes the j-th of oy« partitions of X, and VR %, — {0, 1} symbolizes the indicator

function.
Remark 4.1 The hybrid dynamical systems given by (7) and (8), (10) and (11),
and (19) and (20) can be reduced to the same form as (1) and (2) by proceeding as in
[17].To pursue our goal, consider also the control law

n(0,®,(t,x)) = (:)Tﬁa(t,x), (6,2,x,0) €X x [tg, 00) x R" x RN*™, (21)

and the adaptive laws

~

O(t) = O4(t) — 7,1 O(t) (6-mod.), (22)
O(t) = Oat) — 7o(0)|€"PoieBote) | 011) (e-mod.), (23)
O(t) = Proj,(, (6(1), 04(t))  (proj. operator), (24)
with
Ou(t)2 — Ty Boe) (£, 2(£))e™ (1) Poe) By (25)

@(to) = @y, and ¢ >to. These adaptive laws are to be considered as alternatives to
one another, and capture extensions to hybrid systems of the the s-modification of
MRAC [6], the e-modification of MRAC [5], and the projection operator [23],

7
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respectively. In (22)-(24), the adaptive rate matrix I', € RVN €3 is positive-
definite, y, > 0, P, € R**" is the positive-definite and such that

Onxn = Areg ,Po + PoAret,r + Qqs (26)

and Q, € R"*" is user-defined and positive-definite. To define the matrix projection
operator in (24), firstly consider the definition of vector projection operator.

Definition 4.1 Let X CR” be convex, and letz, : X — R, 6 € X, denote a continu-
ously differentiable convex function over X’ such that inf . ¢ v/, (x) < 0. The vector
projection operator induced by h,(-) over X is defined as proj, : ¥ x R" — R", 06 €X,
such that if (x,x4) €S, then

(amx) T ohy (x)
10j_ (%, %4)5xg — ho(x) uxd (27)
Proj; %, 7 (x) (ah(;(x))T ’
ox ox
and if (x,xq) € S,, then
proj, (%, x4)%x4, (28)

where Sgé{(x,xd) eX x R" : hy(x)>0, ahgfcx) xq> O} andceX.

Definition 4.2 ([24], Ch. 11) Let X; CR" be convex, i = 1, ..., m, and let
hsi : Xi — R, 0 €%, denote a continuously differentiable convex function over X
such that inf ;¢ x,/,i(7) < 0. The matrix projection operator induced by h, ;(-),
(0,i)€X x {1, ...,m}, over Hj"ilX,' is defined as Proj, : ([]/,&;) x RV — RV
such that

Proj (X,Xq4) = [projg(xl,xd,l), ,projg(xm,xd,m)},
" 29
(X,Xq) € (H X,-) x RN, (29)
i=1
where X = [x1, ...,%;,] and Xq = [xq.1, .. »Xdn]-The functions 4,;(-), (6,7) € X
{1, ...,m}, employed to define the vector projection operator, and, hence, the matrix

projection operator must be chosen carefully. Indeed, for each 6 € X and for all
i€{1, ...,m}, the solution of

X(t) = Proj,(X(t),X(t)),  X(to) =Xo,  t2to, (30)
is such that x;(t) € Q, ;1 for all t > ¢y, where
ﬁﬁ,i’lé{xi eX;: h(,,i(x) < 1}. (31)

Thus, 4, ;(-) must be chosen so that, for each k €N and for eachie {1, ...,m},
0;(tr) eﬁg(tz)’l, where 6;(-) denotes the i-th column of O(-).

Next, consider the Lyapunov function candidate

V(t,e, A®)2e P, e + tr(AO'T 'A®), (t,,A0)E [tg, ) x R* x RN, (32)
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where AG(t)20(t) — ©, and we define
W(e)ézmin({Qa}ae):)”6”23 eeRn, (33)

where Amin ({Q,}, ez )= min{Amin(Q,), o0 € Z}. Each of the adaptive laws (22)-(24)
are switched dynamical systems, that is, they experience discontinuities in their
dynamics, but not in their state matrices. Thus, the adaptive gains are computed as
Carathéodory continuous solutions of (22)-(24). Thus, discontinuities of
V(t,e(t), @(t)) , t >tg, are exclusively due to discontinuities in e (£)P,e(t).

The set of resetting events of the reference model are defined as
Dref,, ={tret,i, } X R”, (i,w) €N x N, where

t

bret, 2 nF{t > Max{fopaness Freay 1} - J W(e(r))dr
to

1 (34)

> [V(the(t)0(5)) - V(5ie(s), 0())]

J

bl

Il
N

and k designates the generic index for resetting times. Thus, we partition the set of
resetting times of (19) and (20) as {tx },cn = {tplant,i}ieNU,'EN{ttran,iw }wen- The jump
Maps g4 of o (£ Xref) (051, Xref) EX X [tg, 00) X R, are such that

€T (tref,iw )Po' (tref,iw
hrr[;f (tref,iw »€ (tref,iw ) )href (tref,iw »€ (tref,iw) ) (35)
)href (tref,iw € (tref,iw))) (Z, w) eNxN,

)e(tref,iw) — Zref,iy,

Xref <t;:.f,iw> =X (tref,iw) -

-P

1
2

”(t;f,iw

where Jf : [tg, 00) x R* — RM is such that

Bl c(t, €)heet(t,€) >0,  (t,€) € [to, o) x R"\{0}, (36)

ref

Zrefi, € (0, e (tret,i, )P, (bt ) (tret i )) and is user-defined, the series > i~ "% 2 ¢,

1
is convergent, and P} € R"*", ¢ € %, is symmetric, positive-definite, and such that

P, = P,%,P%,. An interpretation of the resetting time (34) is the following. This is the
time at which the energy injected into the controlled system by the uncertain discrete-
time dynamics exceeds the energy dissipated by the control system’s continuous-time
dynamics.

To improve the closed-loop trajectory tracking error dynamics at isolated time
instants, consider the user-defined time instants U, EN{Eref’iw }, where

Fref i, > max{tplant,,', tref,,-w,l}, (i,w) eN x N, and set

X ref (f:ref’iw> =x (tref,iw ) , (,w)eNxN. (37)

Rearranging the indexes of the plant’s resetting events, these user-defined resetting
times will be considered resetting times of the plant, that is, we will set

UieNUpeN {Ztran,iw } CUien {tplant,i } .

9
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4.3 Main result

The effectiveness of the control law (21) and of the three alternative adaptive laws
(22)-(24) is captured by the following result. For the statement of this result, if we
employ the adaptive laws (22) or (23), then let

A ={(e,A0) : [le|l <c,, [|AB||g < crn}s (38)

where AB(£)20(t) — O, t >1,. Alternatively, if we employ the adaptive law (24),
then let

i {(e, 0) : llell <ce, maxh, (col (6)) <1.j = 1, m} (39)

Expressions for ¢, and cpe are omitted for brevity, and can be deduced by pro-
ceeding as in ([24], p. 325).

Theorem 1.2 Consider the trajectory tracking error dynamics (19) and (20), the
control law (21), the adaptive laws (22)-(24), and the reference model (10) and (11).

Assume that u(t) = n((:)(t), ®@,(t,x(t))), t >to and the matching conditions (12) and
(13) are verified. Additionally, if using the adaptive law (24), assume that 6, €Q,; 1
for all (6,i) €X x {1, ...,m}, where 6; denotes the i-th column of ® given by (18) and

Q, ;1 is defined in (31). Then, both the trajectory tracking error ¢(-) and the adaptive
gain matrix O(-) are bounded uniformly in {z }i e Furthermore, there exists a
compact set A given by (38) when using (22) or (23) or given by (39) when using (24)
such that lim, ... dist((e(t), AG(z)), A) = 0.

Proof: Only the key passages of this proof are presented for brevity. The Lyapunov
function candidate (32) is such that

Wi(e,0) <V (t,e,0) <W3(e,0),  (t,e, AB) Eto,0) x R* x RVN (40)
where

Wi (e, ©)2Amin ({Ps},c5) llell* + tr(AGTT1AO),
W3 (e,0)2Amax ({Ps}, c5) llell* + tr(AGTT?AO)

are radially unbounded. Thus, following classical arguments such as those exposed
in ([24], Ch. 11) or ([25], Ch. 8) for each of the adaptive laws (22)-(24), we can prove

that V(t, e(t), é)(t)) <0 forall (e, é)) ¢ A, where A is compact and such that 0 € A.

Next, proceeding as in the proof of Theorem 4 in [4], we can prove that Assump-
tion 3.1 is verified by (19) and (20) and

S V(5e(t)),O0m)) — V(trse(te) O))]
k—1
exists and is finite. Thus, Theorem 1.1 implies that maximal solutions of (19) and

(20) and of (22)-(24) are uniformly bounded in {;}, .7, and lim,_ . dist (x(t), 71) =0
for all (eo, (:)0) €R" x RV*™ yniformly in {z, teen- |

10
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5. Equations of motion of a quadcopter UAV

In this section, we present the equations of motion of a quadcopter UAV. To this
goal, let UAV’s mass be denoted by m > 0, let the UAV’s matrix of inertia be captured
by the diagonal, positive-definite matrix I=diag(I11, I22, I33) € R3*3_and let the gravi-
tational acceleration be denoted by g > 0. Finally, let the UAV’s position be captured by
r: [to, ) — R?, the UAV’s roll angle be denoted by ¢ : [tg, ) — (—%, Z), the UAV’s
pitch angle be denoted by 6 : [tg, ) — (— 2, 3), the UAV’s yaw angle be denoted by
W : [to, ) — [0,2x), the UAV’s velocity with respect to the inertial reference frame I
be denoted by v : [tg, o0) — R3, the UAV’s angular velocity with respect to I be
denoted by w : [tg, 00) — R3, and the the UAV’s state vector be denoted by
x()2[rT (1), p(2), 0(t), w(t), 0" (2), 0" (2)] " Note that the UAV’s state vector is usually
readily available by employing any commercial-off-the-shelf autopilot system such as
those based on PX4 [12] or Ardupilot [13].

Neglecting the inertial counter-torque and the gyroscopic effect [26], the UAV’s
continuous-time dynamics are given by

r(t) =v(t), r(to)=ro, tE]Jto,), (41)
() = %R(éb(t)a@(t)aw(t))[o, 0,1(2)]" - [0,0,g]"
) (42)
_%PSRT(fﬁ(t)ﬁ() ®)Collo@)llv(@),  v(to) = vo,
() [ ¢(to) bo
0t) | =T (#(),0(t)a (), 6(t0) | = | 6o |, (43)
y(t) | (o) Yo
uz(t)
o) =1 |ust) | —0*®)o(t) |,  olt) = oo, (44)
u4(t)
where the rotation matrix
cosy —siny 0 cos 0 sin @ 1 0 0
R(¢,0,y) = | siny  cosy 0 0 cos¢p —sing |,
0 —sinfd 0 cos@| |0 sing cos¢
((ﬁagl// E,E X —z z 027[)

(45)

captures the UAV’s attitude relative to the inertial reference frame I ([27], Ch. 1),
p> 0 captures the air density, which is considered unknown, S > 0 captures the UAV’s

cross section area, which is considered unknown, Cp € R3*3 is diagonal, positive-
definite, captures the UAV’s drag coefficients, and is unknown, and

1 0 —sind
[(¢,0)2|0 cos¢ cosOsing |. (46)
0 —sin¢g cos@cos¢p

11
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We recall that I'(¢, 0) is invertible for all (¢, 0) € (— % %) X (— 5 %) ([27], Ch. 1).
The total thrust force produced by the UAV’s propellers is defined as

ui(t)2[1, 0)5(2), t € [to, o), (47)
where
in-[3 TJaos [ [0 (2], o

captures the motors’ dynamics, 7> 0 denotes a time constant, / > 0 captures the
motors’ inertia, and #; : [0, 00) — R denotes the total thrust force’s virtual control input.
The roll moment produced by the UAV’s propellers is denoted by u;(-), the pitch
moment produced by the UAV’s propellers is denoted by u3(-), and the yaw moment
produced by the UAV’s propellers is denoted by u4(-). The UAV’s control input is

defined as u(t)2[us(t), us(t), us(t), u4(t)]T, t € [to, o0), and the vector of thrust forces
produced by each propeller is defined as

T(t)2Mr,u(t), € [tg, ), ke{0, ...,ny — 1}, (49)

where the ith component of T'(-),i = 1, ..., 4, namely T; : [0, 00) — [to, o0), denotes
1 0 AT et
1 =270 et
11 0 x|,
1 2 0 ¢t

A

the thrust force produced by the ith propeller, M7,

I'> 0 denotes the distance of the propellers from the vehicle’s barycenter, and cr > 0
denotes the propellers’ drag coefficient [26].

Quadcopter UAVs are under-actuated and, in particular, only four of their six
degrees of freedom can be controlled directly [26]. In this chapter, we are interested in
steering the UAV’s position and attitude along user-defined reference trajectories by
controlling the UAV’s position and cyclically controlling at high frequency one of the
three Euler angles ¢(-), 6(-), and y(-) at the time.

6. Output-feedback linearization of multi-rotor UAVs

In this section, we discuss the output-feedback linearization problem of the plant
model given by (41)-(44) and (48). Specifically, in Sections 6.1, 6.2, and 6.3, we
discuss the output-feedback linearization problem employing the UAV position and
yaw angle, the UAV position and pitch angle, and the UAV position and roll angle as
measured outputs, respectively. In Section 6.4, we unify the framework presented in
Sections 6.1-6.3 and illustrate how the problem of controlling the output-feedback
linearized dynamics can be reduced to the problem of controlling an MRAC system. In
Section 6.5, which presents the key result of this chapter, we apply the MRAC frame-
work for hybrid plants presented in Section 4 to control a multi-rotor UAV, such as a
quadcopter or an X8-copter. As already remarked in Section 1, this result is ground-
breaking because, thus far, the control of multi-rotor UAVs by means of output-

12
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feedback linearization allows to impose the reference trajectory for the vehicle’s posi-
tion and only one of the three angles that capture its attitude.

6.1 Feedback linearization relative to position and yaw angle

To feedback-linearize (41)—(44) relative to the vehicle’s position vector and yaw
angle, we set z3(t)=[r (¢), w(t)] T te [to, 00), as a linearizing output, and applying
Proposition 5.1.2 of [8], and we verify that the dynamical system given by (41)-(44)
and (48) has vector relative degree {4,4,4,2}. Thus, if Cp = 0343, then

) (¢)
} = f3(r(2), (t), 0(t), w(t), (), us(z))
i (¢)
[ 4(t) |
1 uz(t)
G5 (r(2), p(2), 0(2), y (2), ua(t)) ;
u3(t)
| u4(t) |
o I o o e
— s = N = 5 tE[tO, °°)
7(to) Vo #(to) Jo ¥ (to) Y0
(50)
where
ﬁ((ﬁ)g) l//) 03><1
G3(r, ¢, 0,w,u1)2m Izcyclsgp  IszcOsysgp IzzsOsgp]  Izzch | s (51)
{_ uich  wich uice ] mee
Jr(sgpsy + cpcyst)  Jr(cosysO — cyse) Jregped
) I11(cpsy — cysgsh) _In(c¢cu/+sy/s¢59) _ IicOsg
R(¢,0,y)2 Uy U1 u > (52)
IzzCl/ICH IzzC@Sl[/ 12259
U1 231 B U1

ca=cosa, a€R, sa=sina, andf; : R? x (=%, %) x (=%, %) x [0,27) x R> x R — R%

an expression for f5(-, -, -, -, -,-) is omitted for brevity. It holds that

2
B uj cos ¢
detG3 (V) ¢) 99 v, ul) _]Tm3det(l) cos 6 5 (53)

bt < (5 2) 5 (5 5) 0 x 0.

and, hence, Gs(, -, -, -, -, ) is invertible if and only if #; # 0 since ¢ € (—Z, %).
Furthermore, G;l(-, 5 5 +» ) is well-defined if and only if #; # O since
pe (— % %) Remarkably, if I11 = I =uy =7 =] =1, then I~€() is a rotation matrix.

The hypothesis whereby Cp = 03,3 will be lifted in Section 6.5 below.

13
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6.2 Feedback linearization relative to position and pitch angle

By proceeding as in Section 6.1, and setting 2, (t)£[r" (¢), Q(t)}T, tEtg, =), asa
linearizing output, the dynamical system given by (41)—(44) and (48) has vector
relative degree {4,4,4,2}, and, if Cp = 033, then

74 (1)
[ . } =f,(r(t), 9(t), 0@), w(t), o(t), u1(t))
o(t)
EAGE
. us(t)
+Gy (r(t), p(2), 02), w(t), ua(t)) 5
u3(t)
| ua(t) |

(54)
where
R(¢, 0, w) 031
Gy (ry b, 0,y u1)2m | [Lsepoyctd Iszepclsy  —Iszedsd]  —Iss | (55)
U1 U1 U1 mse
fy iR x (—£,2) x (£ %) x [0,27) x R* x R — R*; an expression for
f5(> 5, -, -,-)is omitted for brevity. It holds that
detGy(r, ¢, 0,w,u1) = M
27 @, 0,5, Uq _]Tm3detl’
3 1z Z _Ex
(r, . 0, v, 1) ER? x < 4 2) x ( . 2) % [0,27) % (0, o0),
(56)

and, hence, G,(-, -, -, -, -,-) is invertible if and only if 1 # 0 and ¢ # 0 since
pe (— % %) Furthermore, Gz’l(-, 5 5 +» +,-) is well-defined if and only if #; # 0 and
¢ # 0.

6.3 Feedback linearization relative to position and roll angle
Setting 21 (t)=[r" (2), gl)(t)]T, t €10, 00), as a linearizing output, the dynamical system

given by (41)-(44) and (48) has vector relative degree {4,4,4,2}, and, if Cp = 033,
then

14
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74 (t)
. ] = f1(r(®), 9(2),0(1), w(t), w(t), ua(2))
¢(t)
[ 14(2) ]
i uy(t)
+Gy (r(2), (1), 00), y(2), ua(2)) ,
us(t)
| ua(t) |
ot e g | P S
7(to) vo | | ¥(to) jo | L #(to) a0 SR
(57)
where
R(Cb’ 0, l//) 03x1
Gl_l (1", gb, 0, Y, ul)ém —I33C98!// —I33CI/IC9 I33S¢ I33C9 5 (58)
[ U186 u186 ulcq’)se} mcgso

iR x (=%,%) x (—=5,%) x [0,27) x R3 x R — R*; an expression for
f1G, -5 -, -, -,) is omitted for brevity. It holds that

u? cos ptan 6
detGy(r, ¢, 0,w,u1) = W

)5 x (52) x (-5.5) xl0.20 0,0
(59)

and hence, Gy(-, -, -, -, -,-) is invertible if and only if #1 # 0 and 6 # O since
pe (— % %) Furthermore, Gl’l(-, 5 5 -5 +,-) is well-defined if and only if #; # 0 and

0+ 0.
6.4 Feedback linearization with MRAC augmentation

In light of the results in Sections 6.1-6.3, let

50(7’; ¢9 0; v, o, Uy, j'(r)é GU(V’ ¢; 99 v, w, ul)(_fo-(ry ¢; 99 v, w, Ml)

Ay or +Apar + Aot + A, 37 B,
Ay,o,Oy(; + Ay,o,lyg By,o

(V,¢,0,y/,w,u1,/16)eR3><(—g, %) X <—%, g) x [0,27) x R3 x R x R*,

+ 26)s (60)

_|_

denote the baseline feedback-linearizing control input, where o € {1,2,3}, y, = ¢,

V=053 =y,
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03x3 13 03x3 0343

"1 03:3 0303 033 13 TP Ay Ayen ’
AV,O Ar,l AV,2 AV,3
are Hurwitz,
= 0 - 0
B,é{ 9*1 eRP4, By,gé[;“} eR>4, (62)
Br ),0

and the pairs (AV,BV) and (Ay,a,By,g) are controllable. If

[nl(t)’uZ(t)’u3(t)au4(t)]T = Ca(t)’ S [t0’°°)’ (63)

for some o € {1,2,3}, where {,(t) denotes {,(r(2), ¢(t), 0(t), w(t), o(t),u1(t), 1:(t))
for brevity, then the UAV’s equations of motion (41)—(44) are output-feedback-line-
arized and

j(a(t> :AO')(U(t) +Bo'j’0'(t>’ ){o‘(to) :/,{/6,0’ tZtO, (64)

where y,(0)2[r"(t),7" (¢),7 (2),7 (£),y,(t),3,(t)] Te R, A,£blockdiag (AV, Ay,g)
1 -7 1T
eR¥x14 B & [B,T, B:VF,U] € R™**, and the initial condition y, , € R™ deduced from

(50), (54), and (57).
Fixed o € {1,2,3}, to account for the fact that, in general, Cp # 03,3, we generalize
(64) and consider the plant model

).fa(t) = A{,)(U(t) + B;As [ﬂa(t) + ®0T(D0(t:)(n(t))} +

xg(to) :)(0,03 t>to,

where A, € R*** is diagonal, positive-definite, and unknown. By setting
As = diag(m_l, m-Lm1, Ia_gl) , 6 €{1,2,3}, this matrix can be employed to account for
uncertainties in the UAV’s mass and moment of inertia corresponding to the selected
linearizing output signal z,. The unmatched uncertainty

(0200, £l (1,0(), 0] €B, (66)

where

G (t50)2 — 5 pSE (B(2),02),y (1) Coll o

(£,) € [to, 00) x (R*\{03}),

(67)

captures the effect of aerodynamic forces, which are not explicitly accounted for in
the feedback-linearizing control law (60). The regressor vector @, : [tg, o) X R¥ —

RN~ includes the baseline controller and matched parametric uncertainties not
accounted for in the feedback-linearization process. To capture uncertainties in the
feedback-linearized plant dynamics, such as uncertainties in the location of the UAV’s
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center of mass, such a regressor vector can be constructed to be an explicit function of
the UAV’s translational and angular position as well as of the UAV’s rotational position
and velocity, thus linking explicitly (65) to (41)-(44). Explicit expressions of @,(-, -),
o €{1,2,3}, will be presented in future works.

Having reduced the feedback-linearized equations of motion of the UAV to the
classical form or MRAC, we can compute the virtual control input A,(-) so that the
feedback-linearized plant trajectory y,(-) follows the reference trajectory y ., :

[to, 00) — R such that
j(ref,a(t) = Aref,a)(ref,o + Bref,artf(t)’ )(ref,a(to) = Xref,0,0> t2to, (68)

where A, € R**™* is Hurwitz, B¢, € R™** is such that the pair (Aref g Bref,s) 18
controllable, and 7, : [to, o) — R* denotes the user-defined reference command input.
Fixing 6 € {1,2,3}, this task can be attained by employing a robust MRAC system or
any other nonlinear robust control technique, such as sliding mode or any of its
higher-order variations.

Since A, is user-defined and Hurwitz, o € {1,2,3}, and both B,, and B,.f , are user-
defined, it is possible to set A,ef , = A, and By.f,, = B,,. Furthermore, 7(-) can be
designed so that y,. ,(-) follows the user-defined signal y ., : [fo, %) — R, whose
first 12 components capture the desired position, velocity, acceleration, and jerk, and
whose last 2 components capture the desired trajectory for the UAV’s measured angle
and angular rate.

6.5 Hybrid MRAC and feedback linearization

If 6: [tg, o) — {1,2,3} is a function of time, then the control system presented in
Section 4 can be applied to compute the virtual control input 4, (-). Indeed, (65) is in

the same form as the continuous-time plant dynamics given by (8) with @)(,(t) = 0and
X~ ={1,2,3}. Similarly, (68) is in the same form as the continuous-time reference
model dynamics given by (10).

The sets of resetting events {S,}, .y, which characterize the switching among the
lineatizing outputs 2, (t), t > to, are provided by Algorithm 1. This algorithm assumes
that the user provides a four time continuously differentiable desired trajectory for the
UAV’s position and a twice continuously differentiable desired trajectory for the yaw,
pitch, and roll angles. The user-defined trajectories for the roll and pitch angles are
such that |¢yeer (£)] € (Dmin> Pmax)> £ =10, and |Oyser (t)| € (Omin»> Omax ), Where
0 < Prin < Prmax and 0 < Oin < Opax.

Algorithm 1: Algorithm for multi-output feedback linearization.

1:t* « to > Initialize the last switching time variable

2: fort >ty do

3: Ti(t) « sat(T(t), Ti min> Ti,max )» i €{1, ..., 4} > Enforce saturation
constraints on thrust force T;(z)

4:if 6(t) = 3t — t* > AT nin then

5: 4F ()| > Py OR 10(2)] > Orma then

6:6(t) — arg max{|¢(t)|—Pmax> |0(£)|—Omax }

7:t" —t

8: end if
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9:elseif 6(t) =2 & (|p(t)] < Pmin OR [P (2)] = Ppax) &t — 1% > AT min then

> Enforce constraints on G;(-)

10: G(l') < arg maX e {1,3} (”ez,a(t) (t)” - 80‘)

11:t* —t

12: else if 6(t) = 1 (|0(t)| < Omin OR |0(¢)| > Omax )t — t* > AT i, then

> Enforce the constraints on G4(+)

13: 6(t) — arg max ;¢ 2,3} (llez,00) @)1l — €5)

14:t" —t

15: end if

16: if |l o) ()|l > €5t — t* > AT min then > If any of the tracking errors is too large
and enough time has passed since the last switching

17: G(t> - arg maX,e{1,2,3} (”ez,a(t) (t) I — 80)

18:t* —1¢

19: end if

20: end for

To present Algorithm 1, let the user-defined variable AT,;, > 0 denote the dwell
time of the plant model, that is, the minimum time between two consecutive switching
of the index o (). Furthermore, for each o € {1, 2, 3}, let ¢, > 0 denote the user-defined
tolerance on the output signal tracking ervor

€s,0(1) (£)2C (){ o) () = Xref.o(t) @) > t >to, (69)

13  03x3 O3x6 O3x2
where C2 | 03,3 13 036 03y | € R, Additionally, let T; min > 0,

023 0O2x3 06 1
i€{1,2,3,4}, and T} max > T, min denote the minimum and maximum allowed thrust
for the ith motor, respectively. Finally, let

sat(a, Amin, Amax )= MiN{Amax, Max{a@, dmin}}» (70)
(a9 Omin» amax) ER xR x ]R,

denote the saturation function, where apmin < 0tmax.

7. Numerical simulation results

In this section, we illustrate the applicability of the proposed results by means of a
numerical simulation. In this simulation, the UAV is tasked with ascending and
moving at a constant velocity along the X-axis of the inertial reference frame for
t€[0,5] s, hovering for ¢ € [5,10] s, following an upward spiral trajectory for
t € (10, 30] s, descending along the same spiral for t € [30, 50] s, translating along the
bissetriz of the horizontal plane at a constant velocity for ¢ € [50, 60] s, and hovering
until the end of the mission. Furthermore, the user requires that the UAV’s yaw, pitch,
and roll angles follow predefined trajectories within a margin of 5 degrees at all times.
The user-defined yaw and roll angles are constant at all times, and the user-defined
pitch angle is linearly increasing in the ascending and descending phases of the spiral
trajectory and constant everywhere else; for details, see Figure 1. It is worthwhile to

18



Robust Hybrid Model Reference Adaptive Control and Output-Feedback...
DOI: http:/dx.doi.org/10.5772 /intechopen.1004814

remark that this reference attitude poses a significant challenge. Indeed, as discussed in
Sections 6.2 and 6.3, if 6 = 2, that is, if the feedback linearizing output comprises the
UAV’s position and pitch angle, then the roll angle can not be equal to zero, Similarly, if
o =1, that is, if the feedback linearizing output comprises the UAV’s position and roll
angle, then the pitch angle can not be set to zero. Furthermore, to follow the reference
spiral trajectory imposed by the user, the roll and pitch angles must vary sinusoidally.

Figure 2 shows the thrust force and the time derivative of the thrust force needed
by the UAV to follow the user-defined trajectory. Both u4(t), t > 0, and #;(¢) show

I
5 ——Trajectory

@ - Roll reference trajectory
=3 o User-defined trajectory
=
<
S | | | | | l
0 10 20 30 40 50 60 70

T
——Trajectory L]
Pitch reference trajectory
User-defined trajectory ||

k "
20 60 70
10 T
——Trajectory
@ ---------- Yaw reference trajectory
= 3 O A | T User-defined trajectory
&
=
0 AN ‘ -
0 10 20 60 70

t [s]

Figure 1.

Euler angles capturing the attitude of the UAV. At t = o', the feedback linearizing output is set as 6 = 1. At t =
16.0953 s, shortly after the UAV is tasked with hovering, applying Algorithm 1, the control system switches
feedback lineariging output to ¢ = 2. Finally, at t = 50.0362 s, before the UAV is tasked with moving sideways in
the horizontal plane, applying Algorithm 1, the control system sets o = 3. In this stage, after a brief transient, the
yaw angle closely follows its reference trajectory.
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Figure 2.
Total thrust and time derivative of the total thrust. The total thrust and its derivative lie within bounds that ave

typical for commercial-off-the-shelf motors of Class 1 quadcopter UAVS.
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Figure 3.
Trajectory of the center of mass of the UAV as a function of time. In all modes, the vehicle’s trajectory closely follows
the user-defined trajectory despite uncertainties and the drag force.

profiles that are compatible with the performances of commercial-off-the-shelf elec-
tric motors for Class 1 quadcopter UAVs.

In this simulation, the UAV’s mass is m = 2 kg and its central matrix of inertia is
given by I = diag(0.010,0.010,0.015) kg m”. The matrix of aerodynamic coefficient is
set equal to Cp = 0.001 - 1;. The estimated mass is 2.2 kg and the estimated matrix of
inertia is given by diag(0.020,0.015,0.025) kg m?. The adaptive rate matrix is set as
I, =9-10% -1y for all 6 € {1,2,3}. We set

B,,=[1 1 1], (71)

1; 03
> y,0 —

B’:{u 1 1] 1

and both A, and Ay,(, were designed through the pole placement method, imposing
eigenvalues {—4.7, -5, 2.5, 2.6, —2.9, -8, —1.21, 2.3, -1.6, —1.8, —1.5, —1.6} for
the translational dynamics, eigenvalues {—4, —7} for ¢ = 3 and eigenvalues {—4, —8}
for 0 € {1,2}. The s-modification of the MRAC, that is, the adaptive law (22) is
employed with y, = 0.01 for all 6 € {1,2,3}.

Figure 3 shows the UAV trajectory as a function of time. It is apparent how the
UAV closely follows the reference trajectory at all times. Figure 1 shows the UAV
attitude by means of the yaw, pitch, and roll angles. The reference angle as well as the
user-defined angle are shown only for those stages in which the mode is active. Att =
0 s, the feedback linearizing output is set as 6 = 1. At¢ = 16.0953 s, shortly after the
UAV is tasked with hovering, applying Algorithm 1, the control system switches
feedback linearizing output to ¢ = 2. Finally, atz = 50.0362 s, before the UAV is
tasked with moving sideways in the horizontal plane, applying Algorithm 1, the
control system sets ¢ = 3. In this stage, after a brief transient, the yaw angle closely
follows its reference trajectory. Numerical evidence show that, without the proposed
hybrid system, this maneuver would not be possible by setting ¢(t) = 1 or 6(¢) = 2 for
all £ > 0, that is, without the proposed control system.
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8. Conclusion

This chapter presented the first robust MRAC system applicable to time-varying,
hybrid plant models affected by parametric, matched, and unmatched uncertainties in
the continuous-time dynamics as well as uncertainties in the discrete-time dynamics.
These results have been applied to the problem of controlling the feedback-linearized
dynamics of a quadcopter UAV and tasking the vehicle to follow both a user-defined
trajectory and a user-defined attitude. This result is unprecedented because, due to the
UAV’s underactuation, existing works on the control of quadcopters allow regulating
arbitrarily only four of its six degrees of freedom. The proposed approach, instead,
allows the user to impose reference trajectories for each of the UAV’s six degrees of
freedom. Future work directions concern the extension of the proposed approach
from a specific application, namely quadcopter UAVs, to generic plant models.

Future work directions involve further extensions of the proposed hybrid MRAC
framework for the control of output-feedback linearized systems to cases wherein the
feedback-linearizing output is affected by noise. Additional work directions include
problems wherein the feedback-linearizing output is not readily available for mea-
surement but needs to be deduced from the measured output.
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