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A B S T R A C T

This two-part work presents a novel theory for model reference adaptive control (MRAC) of deterministic
nonlinear ordinary differential equations (ODEs) that contain functional, nonparametric uncertainties that
reside in a native space. The approach is unique in that it relies on interpreting the closed-loop control problem
for the ODE as a simple type of distributed parameter system (DPS), from which implementable controllers
are subsequently derived. A thorough comparative analysis between the proposed framework and classical
MRAC is performed. The limiting distributed parameter system, which underlies the proposed adaptive control
framework, is derived and discussed in detail in this first part of the paper. The second part of this work will
detail numerous finite-dimensional implementations of the proposed native space-based approach.
. Introduction

This paper is the first of a two-part work that presents in a system-
tic and tutorial manner both the theoretical foundation and several
pecific algorithms for a general theory of nonparametric model refer-
nce adaptive control (MRAC), that is, a theory of MRAC systems for
hich matched uncertainties are not parameterized a priori by a finite
umber of real parameters. One of the key problems in adaptive control
s that of steering the trajectories of plants affected by nonlinear,
nknown dynamics. It is therefore essential to make provision for the
lant’s uncertainties and, hence, construct the adaptive control system
nly leveraging the available information. The weaker the assumptions
n the functional uncertainties, the broader the applicability of a
pecific control system, or, equivalently, the easier the portability of
specific control system to a different plant. One of the goals of this

aper is to propose a paradigm shift in the state-of-the-art of determin-
stic parametric adaptive control theory by presenting adaptive control
ystems formulated for a wider class of functional uncertainties.

Similarly to other recent forays in dynamical systems and con-
rol theory, the proposed approach builds on recent developments
n approximation, statistical, and machine learning theory (DeVore,
998; Rasmussen, 2003; Temlyakov, 2011). We have chosen to frame
he development of a nonparameteric control theory in the language
f reproducing kernel Hilbert spaces (RKHSs), also known as native
paces, since the advantages of this setting are well-documented in

∗ Corresponding author.
E-mail address: a.lafflitto@vt.edu (A. L’Afflitto).

numerous recent studies of estimation in native spaces, Gaussian pro-
cess estimation, and Bayesian estimation (Berlinet & Thomas-Agnan,
2011; Paulsen & Raghupathi, 2016; Saitoh & Sawano, 2016). In contrast
to these latter approaches, which are most often cast in a stochastic
setting, this paper focuses on the adaptive control of deterministic
systems governed by ordinary differential equations (ODEs).

1.1. The need for a native space setting

A key assumption in the design of existing adaptive control systems
for deterministic ODEs is that the unknown functional uncertainties
are contained in some subspace contained in the essentially bounded
functions. This assumption, which is tacitly made more often than
not, is essential to guarantee satisfactory performance of the controller
over some sufficiently large domain 𝛺 in the state space X ≜ R𝑛 that
contains the closed-loop plant trajectory. At its foundation this paper
studies a general approach that is based on powerful approximation
error characterizations that are available for functional uncertainties
contained in an RKHS. The techniques in this paper exploit one of the
most important uses of a native spaces in applications: the construction
of rigorous methods for building scattered bases used in approximations,
and, hence, in the representation of unknown nonlinearities.

The theory of approximations using scattered bases has a long
history (Wendland, 2004), and they have been used to great profit
ttps://doi.org/10.1016/j.arcontrol.2024.100969
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in applications where it is unfeasible or inconvenient to use approx-
imations defined over regular grids; see Berlinet and Thomas-Agnan
(2011), Paulsen and Raghupathi (2016), Saitoh and Sawano (2016)
and their references for a detailed presentation on how scattered basis
methods have been used in approximation, interpolation, regression,
stochastic processes, and to approximate solutions of partial differential
equations (PDEs), for instance. Of all the applications of such scattered
bases, some of the most well-known ones are those that use an RKHS
to solve certain canonical problems of estimation theory, particularly
problems in statistical and machine learning theory. Good accounts of
the conspicuous literature on these topics can be found in references
such as Williams and Rasmussen (2006) on Gaussian and Bayesian
estimation, Cucker and Zhou (2007) on statistical learning theory,
or Smola (2002) on machine learning theory. Such bases have also
played an important role in the definition of approximation methods
as they arise in data-driven modeling and Koopman techniques for
both system identification, learning theory, and control (Klus et al.,
2018; Klus, Nüske, Peitz, Niemann, Clementi, & Schütte, 2020; Mauroy,
Susuki, & Mezić, 2020).

From a practical viewpoint, the choice in this paper to use scattered
bases in a native space for adaptive control problems follows from
the fact that they are well-suited for choosing data-dependent bases
from centers along a trajectory, which naturally gives rise to scattered
bases that are not defined in terms of some regular grid in the state
space. Such a strategy of choosing bases along a trajectory is pursued
in adaptive control strategies such as in Choi and Farrell (2000),
Chowdhary, How, and Kingravi (2012), Chowdhary, Kingravi, How,
and Vela (2015), Farrell (1998), Kamalapurkar, Rosenfeld, and Dixon
(2015), Paruchuri, Guo, and Kurdila (2020, 2022, 2023), Rosenfeld,
Kamalapurkar, and Dixon (2019).

Box 1: Parametric adaptive control systems characterize uncer-
tainties using some fixed finite set of basis functions and require
some adaptive mechanism to generate the corresponding coef-
ficients. Direct adaptive control methods ensure convergence
of the tracking error to zero, while these coefficients are not
required to approximate the uncertainty. In addition to ensur-
ing convergence of the tracking error to zero, indirect adaptive
control methods provide coefficients that best approximate the
nonlinear uncertainty in the space characterized by this basis.
In both approaches, the basis functions are either defined a
priori by the user or constructed automatically.

1.2. Parametric versus nonparametric estimation

This paper establishes an adaptive control framework that we define
nonparametric to distinguish it from existing approaches, which we refer
o as parametric. Although this paper does not include any offline
stimation mechanism, to appreciate the concept of nonparametric
ontrol and present this argument, we make a brief digression in the
rea of parametric and nonparametric estimation.

A traditional method of parametric estimation for an unknown
unction 𝑓 arises when, at the outset in formulating the estimation task,
e assume that the uncertainty 𝑓 depends on a finite collection of real
arameters, so that 𝑓 (𝑥) ≜ 𝑓 (𝑥;𝛩𝑁 ) with 𝛩𝑁 ≜

[

𝜃1,… , 𝜃𝑁
]T ∈ R𝑁

for some fixed 𝑁 ∈ N. In this setting, given the functional shape of
𝑓 a priori, knowledge of 𝑓 is completely determined by knowledge
of the coefficients 𝛩𝑁 . In this sense, analysis of estimation methods
is coordinate-centric. Specifically, the question of whether an estimate
𝑓 ≜ 𝑓 (𝑥, 𝛩̂𝑁 ) generated by some algorithm is a good estimate of 𝑓
is completely characterized by how closely the coordinate estimates
𝛩̂𝑁 approximate the true coordinates 𝛩𝑁 in the finite-dimensional
parameter space R𝑁 . It is frequently the case in a traditional problem of
parametric estimation that the true coefficients belong to some subset
of parameters 𝑁 ⊂ R𝑁 , and a parametric estimation algorithm uses the
set 𝑁 both to generate estimates and to describe the uncertainty class
for the estimation problem. The robustness of an estimation method is
2 
quantified by the size of the uncertainty class over which a guarantee
of performance holds. However, since all norms are equivalent on R𝑁 ,
the choice of the norm on the coordinate space R𝑁 plays no particular
role in proving the convergence of parametric estimates that evolve in
continuous or discrete time.

Box 2: The proposed adaptive control framework is called
nonparametric because it does not choose bases ab initio.
Rather, nonlinear uncertainties are considered as elements of
an infinite-dimensional native space.

In contrast to parametric methods, traditional nonparametric esti-
mation methods do not require such detailed insights into the unknown
structure of a function 𝑓 . It is usually assumed that 𝑓 lies in some
uncertainty class  contained in a hypothesis space  of functions,
with 𝑓 ∈  ⊂ ; the term hypothesis space is commonly used
in discussions of approximation theory or learning theory (Cucker &
Zhou, 2007; DeVore, 1998; Temlyakov, 2011), but to a lesser degree
in control theory. Here, it is important to note that the hypothesis
space  should be infinite-dimensional. Otherwise, the problem can
be reduced to a problem of parametric estimation. In contrast to
the parametric case, a conventional nonparametric estimation method
introduces a family of estimates 𝑓𝑁 of 𝑓 indexed by the number of
parameters, and convergence is studied in the norm on , or even
some other weaker norm, as the number of parameters 𝑁 → ∞.
The traditional goal of nonparametric estimation methods is to devise
methods that give good estimates in terms of 𝑁 for different choices of
the uncertainty class  and hypothesis space , and to characterize the
estimation error in terms of the number of parameters 𝑁 . In contrast
to parametric estimation methods, since the hypothesis space  is
infinite-dimensional, the choice of the norm on  plays a pivotal role
in describing the performance of nonparametric estimation methods
since all choices of  do not yield equivalent norms. By definition,
consideration of the family indexed by 𝑁 as a whole is an intrinsic
part of conventional nonparametric estimation methods and statistical
learning theory (Vapnik, 1999).

Box 3: The proposed nonparametric adaptive control frame-
work is based on viewing the problem as defining a distributed
parameter system (DPS). To obtain implementable controllers,
the DPS is approximated in finite-dimensional native spaces.
A key advantage of nonparametric adaptive control is that it
allows assessing the controller’s performance as a function of
the dimension of the approximating space. A challenge, which
is addressed in the second part of this two-paper work, is
defining an approximating space that allows attaining user-
defined levels of performance in the tracking error dynamics.
The existing literature on parametric adaptive control does
not describe a general, but precise, approximation strategy to
guarantee conclusions of this type.

1.3. Parametric versus nonparametric adaptive control

One of the goals of this paper is to develop a general nonparametric
theory of adaptive control for nonlinear ODEs that have the same spirit as
nonparametric methods of function estimation but guarantee controller
performance instead of fidelity of function estimates. Remarkably, the
proposed approach does not reduce to the application of nonparamet-
ric estimation methods to the classical MRAC framework. Indeed, to
remark on this point, we present direct MRAC systems only, that is,
adaptive control systems that assure certain levels of trajectory tracking
error performance, such as its uniform ultimate boundedness or its
asymptotic convergence, and boundedness of the adaptive terms, but do
not produce or rely on estimates of the unknown elements of the plant
model. In the context of this paper, adaptive terms denote functions
computed as solutions of partial differential equations in an infinite-
dimensional setting. In the second paper of this two-part work, the
problem of identifying adaptive terms is reduced to the problem of com-
puting adaptive matrices as solutions of ODEs in a finite-dimensional
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setting aimed at approximating and realizing in problems of practical
interest the results from the infinite-dimensional setting.

The authors would argue that the current practices for deterministic
adaptive control of ODEs mostly can be interpreted as parametric
methods. All of the standard references on adaptive control for ODEs,
including the theory in such popular texts as Farrell and Polycarpou
(2006), Ioannou and Sun (2012), Krstic, Kanellakopoulos, and Koko-
tovic (1995), Lavretsky and Wise (2012), Narendra and Annaswamy
(1989), Sastry and Bodson (2011), Slotine and Li (1991), Tao (2003),
build controllers for plants affected by some nonlinear uncertainty
𝑓 (𝑥;𝛩𝑁 ), whose functional shape is given and whose number of un-
nown parameters 𝑁 is fixed. In these cases, adaptive control synthesis
nd performance analysis are coordinate-centric. Of all these texts, Far-

rell and Polycarpou (2006), Lavretsky and Wise (2012) come closest
to framing a general theory of adaptive control in the philosophy
of nonparametric estimation of functions. However, once the uniform
approximation assumption (see Section 3.1 below) is made, also, these
references focus primarily on stability and convergence in time of coor-
dinate expressions in Euclidean space for a fixed 𝑁 . These works do not
make guarantees of performance for different choices of the functional
uncertainty classes  in a variety of infinite dimensional hypothesis
spaces  as the number of parameters 𝑁 varies. Furthermore, they do
not describe how coordinate implementations for different 𝑁 must be
related to draw conclusions about performance as a function of 𝑁 in
arious function spaces, nor do they connect the controller performance
xplicitly to the dimension 𝑁 in some general theoretical framework.

To ease the exposition of the proposed nonparametric control frame-
ork and demonstrate its distinguishing features, this paper presents
ow classical MRAC can be ported into the nonparametric setting. The
roposed theory has not been developed in a vacuum but should be
nderstood as a natural culmination of several influences in adaptive
ontrol theory over the years. There exist papers that describe ap-
roaches that can be construed as nonparametric control methods in
ne sense or another. For instance, Glasov, Zybin, and Kosyanchuk
2019), Medvedev (2013a, 2013b) describe nonparametric methods for
variety of specific problems. These methods differ from those in this
aper in that we seek a general theory that holds for a whole family of
daptive control methods.

Since this paper draws some arguments from nonparametric esti-
ation theory, it can be argued that some of the results presented
erein are relatively close to those developed in Boffi, Tu, and Slotine
2022), Chowdhary et al. (2015), Kingravi, Chowdhary, Vela, and
ohnson (2012). These references either employ probabilistic methods
r combine deterministic and stochastic analyses, and often include
echniques that synthesize powerful results on Gaussian processes with
stochastic) Lyapunov stability arguments. The proposed framework,
owever, is purely deterministic. The incorporation of stochastic el-
ments in a basic, general theory could provide valuable additional
ools for the development of algorithms or analysis of performance.
he plethora of results from Gaussian process estimation, like those
sed in Boffi et al. (2022), Chowdhary et al. (2015), Kingravi et al.
2012), would be a valuable addition. However, to keep the analysis in
his paper general enough to account for a wide collection of methods
nd systems, but simultaneously relatively easy to describe in terms
f conventional methods, we have elected only to rely on common
nalysis tools based on deterministic Lyapunov methods. The extension
o a stochastic setting, one that develops an accompanying theory
ith the same qualitative performance bounds described in this paper,
ould be a substantial and nontrivial addition to this paper. We leave

his task for future work.

.4. Additional novel results

This work does not only propose a novel control framework, namely
onparametric adaptive control but also presents several additional

oteworthy contributions to the state-of-the-art of adaptive control a

3 
heory. For instance, in the second paper of this two-part work, the
erformance of the control systems is measured by a single performance
ndex, which bounds the ultimate tracking error. This performance
ndex is then used to introduce the notion of ‘‘nearly approximation
ptimal’’ control. To the authors’ knowledge, there is no such stan-
ard and general metric to quantify the quality of robust adaptive
ontrollers in the existing literature for ODEs. In existing works on
daptive control, the problem of assessing the quality of asymptotic
ehaviors reduces to proving the boundedness of all signals at all times
nd the uniform ultimate boundedness of the tracking error within
ome bounds that, in general, are functions of unknown quantities, and
ence, are usually impossible to assess a priori. The approach presented
n this paper is the first attempt to provide a systematic performance
rror metric systematically, for a large collection of hypothesis spaces.

An additional relevant contribution of this work is that, exploiting
he theory of native space embedding allows us to quantify explicitly
nd a priori the ultimate bounds on the trajectory tracking error. These
ounds are given in terms of the power function associated with the
KHS, which is a metric of the error of approximating an uncer-

ainty lying in an infinite-dimensional space using a finite-dimensional
pace. The authors are unaware of any similarly simple and explicit
rror bound for the host of commonly used bases in approximation-
ased control theory, see for example Farrell and Polycarpou (2006),
avretsky and Wise (2012).

Also worthy of mention is the discussion on the proposed convex
rojection operator that is used to determine bounded adaptive gains
volving in Hilbert spaces. We provide an insightful study of the rela-
ionship between Fréchet derivatives, the convex projection operator,
nd the classical projection operator. Furthermore, within the context
f the newly introduced convex projection operator in an RKHS, we
etain all essential properties of the classical continuous projection
perator employed in robust parametric MRAC.

.5. Ramification of the proposed nonparametric MRAC framework

In this section, we outline connections and potential ramifications
f the proposed work on nonparametric MRAC with three key trending
opics, namely data-driven control methods, the use of neural networks
n uncertainty characterization and control, and safety certification of
daptive controllers.

.5.1. Implications for data-driven methods
Nonparametric control allows the development of novel data-driven

ethods for its ability to deduce conservative bounds on the tracking
rror as explicit functions of some measures of the user’s ability to ap-
roximate the infinite-dimensional space of uncertainties using finite-
imensional parameterizations. As discussed in the second paper of this
wo-part work, the user’s ability to approximate infinite-dimensional
ncertainties can be measured by the number of centers for the kernels
efining the native spaces, the distance between these kernels within
ome region, or the smoothness of these kernels. One of the substantial
imitations of the current generation of approaches to approximation-
ased, parametric adaptive control is that the overall theory usually
ssumes that an oracle provides some highly structured information
bout the uncertainty. Indeed, this oracle defines the subspace used for
pproximations of the functional uncertainty in the feedback control
aw, and fixing this subspace amounts to selecting the dimension 𝑁 and
he associated basis functions that give a sufficiently accurate estimate
f the uncertainty. Furthermore, existing parametric methods do not
rovide bounds on the closed-loop system’s tracking error as a function
f 𝑁 . However, in the authors’ opinion, one of the most substantial
hallenges in the current generation of adaptive control methods for
onlinear ODEs, which needs to be addressed to enable more systematic
pplications of adaptive control systems to poorly characterized plant
odels, is how to reduce the ‘‘information burden’’ on these oracles
nd improve the characterization of the controller’s performance as
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Fig. 1. (a) Normalized tracking error and dimension 𝑁(𝑚) of the approximation space over time. The ultimate error is bounded by the approximation error sup𝜉∈𝛺 𝑁 (𝜉), where
𝑁 (⋅) denotes the power function; for details, see Section 4.1 below. (b) A comparison of the state trajectory versus the reference model over the set of centers 𝜉 ∈ 𝛺 used after
the final triggering event. The theoretical results of Powell, Kurdila, L’Afflitto, Wang, and Guo (2023) ensure the ultimate boundedness of the tracking error of the closed-loop
system for the event-driven control law. The dimension of the finite-dimensional approximating space 𝑁(𝑡) approaches the effective dimension 𝑁∞ as 𝑡 → ∞.
a function of the parameters characterizing approximations of the
uncertainty space. The proposed results make a significant step in this
direction by developing both theory and supporting algorithms, where
the adaptive controller decides on the appropriate dimension 𝑁 , the
selection of bases, and the choice of subspaces.

To this end, since the proposed controllers are aware of their perfor-
mance as functions of the number of bases 𝑁 employed to approximate
the infinite-dimensional space of uncertainties (see the second paper of
this two-part work), data-driven methods can be employed to choose 𝑁
as a function of user-defined ultimate bounds on the trajectory tracking
error for a given control task. While a discussion of the attendant
theory for such a basis augmentation is too lengthy for this paper,
Fig. 1, which is extracted from Powell et al. (2023), depicts some
initial efforts along these lines. In Powell et al. (2023), the authors use
an event-driven MRAC control scheme with the goal of reducing the
amount of information that an oracle must provide to formulate the
adaptive control problem. The event trigger, which signals that it is
time to enrich the basis, is defined explicitly in terms of the bounds
that appear in the above table. As shown in Fig. 1, initially, we set
𝑁(𝑡 = 0) = 0 or 𝑁(𝑡 = 0) very small, and then increase 𝑁(𝑡) as 𝑡 → ∞.
The adaptive selection of bases ultimately generates the collection of
scattered centers shown in Fig. 1(b). Knowledge about what subspaces
constitute a good choice for the control task evolves over time, and,
eventually, lim𝑡→∞ 𝑁(𝑡) = 𝑁∞ < ∞.

1.5.2. Implications for adaptive control via neural networks
The study of adaptive control of nonlinear ODEs has evolved syn-

ergistically with the development of the theory of approximations in
terms of neural networks. Historically, most of the initial work along
these lines uses single-layer neural network architectures. A general
control theory-centric account of such architectures is given in Farrell
and Polycarpou (2006), Lavretsky and Wise (2012). Recently, in light
of the empirical evidence of the excellent performance of certain multi-
layer neural networks (Daubechies, DeVore, Foucart, Hanin, & Petrova,
2022; DeVore, Hanin, & Petrova, 2021; Yarotsky, 2017), controllers
that exploit deep neural networks have been developed in Joshi and
Chowdhary (2019), Joshi, Virdi, and Chowdhary (2021), Le, Greene,
Makumi, and Dixon (2021), Patil, Le, Greene, and Dixon (2021).

The proposed nonparametric adaptive control framework, with its
explicit bounds expressed in terms of the power function, which is a
4 
measure of the approximation error, has the potential, to be developed
in the future, to influence strongly the development of adaptive control
strategies defined in terms of neural networks. Specifically, the pro-
posed nonparametric adaptive control framework has the potential to
be used in an a priori role in initial controller design and in a a posteriori
role for advanced adaptive methods that refine the parameterization
of the space of functional uncertainties as the control system operates.
The proposed framework enables the comparison of different choices
of bases, corresponding to different locations of centers, on the perfor-
mance bounds on tracking error; for details see the second paper of
this two-part work. Thus, we argue that this property gives an avenue
for addressing a pervasive open question in adaptive control methods
based on neural networks.

Recent papers on deep neural networks are motivated by the idea
that the theory for single-layer networks is well-established and sub-
stantially complete. The authors believe that the framework presented
in this paper may partly overturn this assessment. Although it is incon-
trovertible that the theory of adaptive controllers based on single-layer
networks is older and more mature, the overwhelming majority of these
approaches make the standard uniform approximation assumption at
the outset of the theoretical studies of stability and convergence. In
comparison, there are considerably fewer methods that do not make
such an assumption a priori, and that adaptively add to the bases. Over-
all, the authors would not describe these methods as stating general
theories per se since they do not describe a general way to make precise
error estimates as a function of 𝑁 for a variety of nonparametric func-
tional uncertainty classes in a large family of function spaces. In this
respect, a general nonparametric theory for adaptive control strategies
based on single-layer networks is not yet complete. We believe that the
results presented in this paper provide a mechanism to pursue such a
general theory.

There is a rapidly growing body of literature on the expressiveness
of deep neural networks (DNNs) (Daubechies et al., 2022; DeVore et al.,
2021; Yarotsky, 2017). Existing results, however, do not necessarily
produce practical algorithms for achieving such rates in an online
setting. It is usually assumed that offline optimization, or training,
processes generate realizations of such good estimates. Perhaps, just as
importantly, the guarantees of the existence of estimates that achieve
rates of convergence are made for bases defined over a compact set
in R𝑛, most often over [0, 1]𝑛. These rates of convergence historically
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have arisen in investigations of methods that excel for extremely large
dimensions of approximants. On the other hand, if we consider re-
cent efforts to develop nonparametric adaptive control methods, such
as (Choi & Farrell, 2000; Chowdhary et al., 2012, 2015; Farrell, 1998),
adaptive control methods are usually designed in terms of scattered
bases that are relatively very low dimensional compared to deep neural
networks and are defined in terms of samples along a trajectory. Our
emphasis in this paper is on constructing nonparametric adaptive con-
trol methods with guaranteed or provable performance bounds in terms
of 𝑁 , for parsimonious collections of bases that are feasible for online
computations. While the literature on the empirical performance of
deep neural networks is, unarguably, exceptionally promising, approx-
imation theorists may still lament the lack of understanding for these
architectures and practical algorithms with guaranteed sharp error
bounds; see the very recent Daubechies et al. (2022) for a discussion. In
this work, we concentrate on cases where explicit performance bounds
hold for approximants that are sufficiently low dimensional but useful
for online approximations. The question of when and how DNNs can be
effectively used with the nonparametric setting and goals of this paper
is a complex topic, which should be studied carefully in future research.

1.5.3. Implications for safety certifications
Whereas the adaptive control technology has been successfully im-

plemented on multiple, research-grade or very advanced industrial
applications, one of the problems hindering the widespread of this
technology is the difficulty in finding a universally accepted metric
of performance and standard ways to capture the closed-loop system’s
performance in multiple scenarios, and, hence, certify their safety. One
of the key elements of success for classical linear control systems, which
still permeates a large number of commercial tools, was the wide array
of tools, such as those available from the analysis of Bode and Nyquist
plots, to certify their effectiveness. In the realm of adaptive control
theory, because of their intrinsic nonlinear nature, such tools cannot
be directly employed, and valid, universally accepted alternatives are
unavailable.

As already mentioned, the proposed framework allows character-
izing explicitly the trajectory error bounds as functions of the user-
defined uncertainty classes approximating the actual nonlinear un-
certainty. Furthermore, the notion of approximation theory optimal
control systems presented in the second paper of this two-part work
allows setting a standard metric of performance across control systems
predicated assuming that the space of functional uncertainties affecting
some plant model is a native space. For these reasons, the authors
believe that the proposed framework will further advance the use of
adaptive control in common industrial applications.

1.6. Outline of this publication

This paper is structured as follows. Section 2 provides a formal
statement of the problem pursued in this paper. Section 3 shows some
key features of classical parametric adaptive control, which will be
compared to those of nonparametric adaptive control in the following
section. In Section 3.1, we present the ubiquitous uniform approxima-
tion assumption that constitutes the foundation of nearly all MRAC
methods for nonlinear ODEs; to a large extent, this assumption commits
an analyst to a real-parametric approach. Successively, in Section 3.2,
we review what is probably the most well-known adaptive law, namely
the real parametric gradient method. We have chosen to focus on
this adaptive law for the simplicity of its structure and of the com-
parative analysis between the classical parametric and the proposed
nonparametric form of MRAC in the following section.

In Section 4, we present a detailed discussion on how nonparametric
MRAC differs from parametric MRAC. Section 4.1 carefully discusses
how the uniform approximation assumption evolves from the classical,
parametric sense to the setting of native spaces, and presents essential
tools of native spaces to quantify how approximation errors vary with
5 
the number of approximants. Section 4.2 describes the nonparametric
gradient law and compares it to the classical, parametric one. This
section also describes how using the general approach in this paper,
it is possible to define rigorously a system that represents the limiting
behavior of the control strategy as 𝑁 → ∞. Section 4.3 gives an account
of how functional uncertainty can be described in native spaces and
used to describe adaptive control problems. In particular, we present
three key uncertainty classes. One of these classes is finite-dimensional
and is the one typically used in parametric MRAC. The other two classes
are infinite-dimensional and include the finite-dimensional one. These
functional uncertainty classes are then used to introduce the notion of
‘‘nearly approximation optimal’’ control schemes. This step introduces
a way of measuring the performance of a control scheme relative to
a well-known standard, the error of best approximation in the uncer-
tainty class. Finally, Section 4.4 describes how, in a nonparametric
framework, it is possible to describe systematically how additional
information in the form of priors can be used to improve conclusions
about controller performance. In this context, the term ‘‘priors’’ refers
to additional information about the functional uncertainty 𝑓 that can be
used to make better decisions about controller design. While the use of
priors is a standard feature of approximation and learning theory, this
topic is not addressed systematically in the existing practices of MRAC
control for nonlinear ODEs.

Section 5 marks the beginning of the second part of this paper
by showing how the classical MRAC architecture can be ported from
the parametric to the nonparametric setting. The resulting governing
equations form a limiting distributed parameter system (DPS) because
they show the closed-loop system’s dynamics as the number of approxi-
mating parameters 𝑁 tends to ∞. The limiting DPS is an ‘‘ideal’’ system
since the associated adaptive controller, which is used to define the
DPS, contains adaptive gains associated to the functional uncertainty
that reside in the uncertainty class in the generally infinite dimensional
space . For this reason, the limiting controller cannot be implemented
in practice. In Section 6, we draw conclusions and briefly anticipate
key results presented in the second paper associated with this two-
part work. These results allow to implementation the limiting DPS in
finite-dimensional settings, and, hence, in numerical applications.

2. Problem statement

In this paper, we consider plants in the form

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵 (𝑢(𝑡) + 𝑓 (𝑥(𝑡))) , 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0, (1)

here 𝑥 ∶ [𝑡0,∞) → X denotes the plant trajectory, X = R𝑛 denotes the
tate space, 𝑢 ∶ [𝑡0,∞) → R denotes the control input, the system matrix
∈ R𝑛×𝑛 is unknown, the control influence operator 𝐵 ∈ R𝑛 is known

nd such that the pair (𝐴,𝐵) is controllable, and 𝑓 ∶ R𝑛 → R is the
onlinear matched uncertainty. The functional uncertainty 𝑓 resides in
he function space , which we take in this paper to be an RKHS of
eal, scalar-valued functions defined over the state space.

Plant models in the same form as (1) are found in many engineering
roblems. For instance, in mechanical problems, the plant trajectory
ay consist of the set of generalized coordinates (e.g., its position)

nd their derivatives. In these problems, the block structure of the

atrix 𝐴 can be represented as 𝐴 =
[

0𝑘×𝑘 𝐼𝑘
−𝐾𝑃 −𝐾𝐷

]

, where 𝑘 ∈ N

enotes the number of degrees of freedom. The top part of this matrix,
amely

[

0𝑘×𝑘 𝐼𝑘
]

, is known and contains the kinematic relationship
etween generalized coordinates and their derivatives. The bottom part
f this matrix embodies linear visco-elastic effects, or, at least, their
inear components, by means of the unknown matrices 𝐾𝑃 , 𝐾𝐷 ∈ R𝑘×𝑘.

ithin the context of mechanical systems, the matrix 𝐵 gives the
elationship between forces and moments and the time derivatives of
he generalized coordinates, and, hence, is a function of the usually
onstant inertial properties of the system such as mass or moments of
nertia. Similar considerations can be made also for other classes of
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systems such as electro-mechanical or thermodynamic systems to name
a few. Furthermore, in most problems of practical interest, where the
relationship between generalized coordinates, their time derivatives,
and quasi-velocities is not linear and, hence, cannot be defined by a
constant matrix 𝐴 as in (1), as it occurs, for instance, in the presence
of rigid bodies rotating in the three-dimensional space, it is possible
to apply feedback-linearizing control inputs that reduce the original
nonlinear plant dynamics to the form (1).

For simplicity of exposition, we focus on a single input plant model.
The multi-input case is relevant and applies to considerably larger
classes of relevant problems. However, it adds some unnecessary com-
plexity to the arguments presented in this paper, and we seek to
emphasize what is novel to a large extent without the attendant book-
keeping for multi-inputs. By paying careful attention to the arguments
exposed in this paper, results for the 𝑚-input problem can be deduced
without excessive effort in cases where the functional uncertainty
resides in the Cartesian product space 𝑚. However, the extension to
he full complexity of R𝑚-valued native spaces as in Wang, Kurdila,
’Afflitto, Oesterheld, and Stilwell (2024) for R𝑚-valued controllers,
efined in terms of operator kernels, is substantially more abstract and
eft for future discussions.

The plant model (1) assumes that the nonlinear uncertainties are
ime-invariant, that is, explicit functions of the state only, and matched,
hat is, are premultiplied by the known matrix 𝐵. The unmatched
ncertainties are linear in the state, that is, are captured by 𝐴𝑥(𝑡),
≥ 𝑡0. Nonlinear unmatched uncertainties are neglected. Besides the

act that such a plant model is the one traditionally considered for
lassical MRAC systems and, as already discussed, can capture broad
lasses of problems of practical interest, such a model allows us to
resent the proposed control framework in a relevant, though simpler,
ontext. Once the results in this paper are well established, they can be
orted to more general classes of plant models, such as affine-in-control
odels, as described for example in Farrell and Polycarpou (2006). We

eave the details of how to exploit the strategies in this paper for more
eneral models for future study.

Box 4: To present the concept of nonparametric control, this pa-
per presents a model reference adaptive control system tasked
with steering the trajectory of the plant model (1) to the
trajectory of the reference model (2). Despite classical MRAC,
the matched uncertainty 𝑓 is not characterized ab initio using a
regressor vector of fixed length but is merely assumed to be an
element of a native space.

Our goal is to find a state-feedback control law 𝜇 ∶ X → R such
that the input 𝑢(𝑡) = 𝜇(𝑥(𝑡)) steers the plant trajectory to a reference
trajectory 𝑥𝑟 ∶ [𝑡0,∞) → X defined as the solution of the reference model

̇ 𝑟(𝑡) = 𝐴ref𝑥𝑟(𝑡) + 𝐵ref 𝑟(𝑡), 𝑥𝑟(𝑡0) = 𝑥𝑟,0, 𝑡 ≥ 𝑡0, (2)

where the reference command input 𝑟 ∶ [𝑡0,∞) → R is continuous and
bounded, 𝐴ref ∈ R𝑛×𝑛 is Hurwitz, 𝐵ref ∈ R𝑛, the pair (𝐴ref , 𝐵ref ) is
controllable, and the matching conditions

𝐴ref = 𝐴 + 𝐵𝛼T, (3)

𝐵ref = 𝐵𝛽, (4)

are verified by some 𝛼 ∈ R𝑛 and 𝛽 ∈ R; note that 𝛼, in general, is
unknown, whereas 𝛽 must be known.

The problem of finding a feedback control law such that the trajec-
tory of a poorly modeled plant follows the trajectory of some reference
model is typical of the MRAC literature. The reference model should
not be considered as a mere tool to generate the reference trajectory.
Designing 𝐴ref and 𝐵ref implies designing those properties the plant
ynamics should have at all times. The reference command input is
o be interpreted as some user-defined input to the ideal model.

An example to appreciate the relationship between (1) and (2) is

he following. The former may capture the dynamics of some aircraft, R

6 
which is subject to poorly modeled dynamic and aerodynamic effects,
and the latter may capture the aircraft’s ideal dynamics subject to the
pilot’s input 𝑟(⋅). The matching uncertainties are not to be seen as ad-
oc constraints, which, as discussed in the following, are needed to
erive the trajectory tracking error dynamics. The matching conditions
ubstantially mean that the reference model needs to be chosen so that
ts dynamics can be mimicked by at least one control input, namely

(𝑡) = 𝛼T𝑥(𝑡) + 𝛽𝑟(𝑡) − 𝑓 (𝑥(𝑡)), 𝑡 ≥ 𝑡0, (5)

hould 𝛼 and 𝑓 (⋅) be known.
For a given control law 𝜇(⋅), let 𝑥(𝑡;𝜇) denote the solution to (1)

ith 𝑢(𝑡) = 𝜇(𝑥(𝑡)) so that the trajectory tracking error corresponding to
he control law 𝜇(⋅) is given by

(𝑡) ≜ 𝑒(𝑡;𝜇) ≜ 𝑥(𝑡) − 𝑥𝑟(𝑡) = 𝑥(𝑡;𝜇) − 𝑥𝑟(𝑡), 𝑡 ≥ 𝑡0. (6)

he asymptotic tracking problem addressed in this paper reduces to
inding 𝜇(⋅) so that

lim
→∞

‖𝑥(𝑡;𝜇) − 𝑥𝑟(𝑡)‖R𝑛 = 0. (7)

. The structure of real parametric adaptive control

In this section, we outline some key structural features of the the-
ry that support classical MRAC schemes. Specifically, in Section 3.1,
e discuss the role of the uniform approximation assumption on the
efinition of the functional uncertainties in the plant dynamics. In
ection 3.2, we review one classical adaptive law, also known as
arametric gradient learning law. This particular learning law is the
oundation for many robust modifications that have subsequently been
eveloped in MRAC methods. Developed in parallel to Section 4 be-
ow, this discussion allows appreciation of the fundamental differences
etween the proposed nonparametric control framework and classical
eal parametric control.

.1. The role of the uniform approximation assumption

A key problem driving a great part of the MRAC literature in the past
wo decades lies in describing or characterizing the matched, functional
ncertainty 𝑓 (⋅) in (1). Deriving an MRAC control law without some
ery specific structural information about this term has been impossible
his far.

A very large majority, if not the totality, of MRAC systems relies
n the uniform approximation assumption. This structural assumption
s used to justify a parameterization of 𝑓 (⋅) by means of some known
unctions collected in a regressor vector, which are given a priori by the
ser or built automatically over time, and some unknown matrix of
oefficients. Usually, this assumption is either explicitly or implicitly
ssumed to hold over some approximation set 𝛺 ⊆ X, wherein the
lant trajectory is expected to lie at all times, given the range of
dmissible initial conditions. As it will become apparent from Section 4
elow, native space embedding adaptive control systems assume that
unctional uncertainties are elements of a native space and do not rely
n a parameterization of such a space using a regressor vector, or an
quivalent structure, given a priori.

efinition 3.1 (Uniform Approximation Assumption). The scalar-valued
unction 𝑓 (⋅) in (1) is approximated over the set 𝛺 ⊆ X by an ideal
unction
∗
𝑁 (𝑥) ≜ 𝛷T

𝑁 (𝑥)𝛩∗
𝑁 for all 𝑥 ∈ 𝛺, (8)

uch that

𝑓 (𝑥) − 𝑓 ∗
𝑁 (𝑥)| ≤ ‖𝑓 (⋅) −𝛷T

𝑁 (⋅)𝛩∗
𝑁‖𝐿∞(𝛺) ≤ 𝜖 for all 𝑥 ∈ 𝛺, (9)

here 𝜖 > 0 denotes the error tolerance, the regressor vector 𝛷𝑁 (⋅) ∶ X →
𝑁 is known and the vector of ideal parameters 𝛩∗

𝑁 ≜
[

𝜃∗1 ,… , 𝜃∗𝑁
]T ∈

𝑁
 is unknown.
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We emphasize that the uniform approximation assumption is a
statement about the offline approximation error of the function 𝑓 (⋅).

his assumption is usually the starting point of an analysis of an
daptive control law in what is commonly known as approximation-
ased adaptive control theory for ODEs (Farrell & Polycarpou, 2006;
avretsky & Wise, 2012). The error tolerance 𝜖, the choice of basis
unctions or regressors 𝜙𝑖 ∶ R𝑛 → R, 𝑖 = 1,… , 𝑁 , such that 𝛷𝑁 (𝑥) ≜
𝜙1(𝑥),… , 𝜙𝑁 (𝑥)

]T for all 𝑥 ∈ 𝛺, the number 𝑁 of basis functions, and
election of the subset 𝛺 constitute design choices since the feedback
ontrollers depend on them. The uniform approximation assumption
lso usually entails the existence of a hypothesis space 𝐻 , so that
𝜙𝑖(⋅)}𝑁𝑖=1 ⊂ 𝐻 ⊆ 𝐿∞(𝛺) although this implication is seldom emphasized
n the existing adaptive control setting. Since 𝑁 is fixed, we refer to
his body of work and general approach as adaptive control theory in
uclidean spaces or real-parametric adaptive control theory.

Usually, the offline approximation error tolerance 𝜖 is of the same
rder as the maximum magnitude of any noise or injected disturbance
o which the system is subject. The choice of 𝜖 may also come from
n understanding of the fidelity of the model from experiments or
omputational studies.

Even if 𝜖 and 𝛺 are known a priori, the uniform approximation as-
umption should be interpreted as defining critical data or information
rovided by an oracle, namely the hypothesis space 𝐻 , the number 𝑁 ,
nd the specific choice of basis {𝜙𝑖(⋅)}𝑁𝑖=1. Furthermore, even if 𝜖 was
pecified, since 𝑓 (⋅) is unknown, it is generally a very difficult task to
ake an a priori choice of the appropriate set 𝛺, the number of basis

unctions 𝑁 , and a good collection of basis functions 𝛷𝑁 (⋅) that ensure
uniform approximation error of magnitude 𝜖 or smaller. This proves

hallenging in no small part because such an appropriate set 𝛺 must
ontain the trajectory of interest, which is not even known a priori.
mploying larger sets 𝛺 reduces the complexity of assuring that 𝑥(𝑡) ∈
for all 𝑡 ≥ 𝑡0, but also increases the complexity of finding parameters

hat may verify the uniform approximation assumption. This situation
hould be contrasted to the task of selecting bases for approximation
f partial differential equations (PDEs), where the domain over which
pproximations are sought is ordinarily known at the outset.

In MRAC systems, it is ordinarily true that a learning or adaptive
aw is introduced to govern the propagation of the real parameter
̂𝑁 ∶ [𝑡0,∞) → R𝑁 that subsidize for the lack of knowledge of the ideal
arameters 𝛩∗

𝑁 . In indirect MRAC, 𝛩̂𝑁 (⋅) is designed to converge or,
t least, closely approximate 𝛩∗

𝑁 . In direct MRAC, the convergence of
̂𝑁 (⋅) to 𝛩∗

𝑁 is not required. For an overview of these two broad classes
f techniques, see Farrell and Polycarpou (2006), Ioannou and Sun
2012), Krstic et al. (1995), Lavretsky and Wise (2012), Narendra and
nnaswamy (1989), Sastry and Bodson (2011), Slotine and Li (1991).

.2. The classical real parametric gradient law

In this section, we recall both the control law and the adaptive law
hat are often understood to define the iconic example of a classical
RAC system.

While relying on the uniform approximation assumption, many
orking implementations of adaptive control for ODEs are based on

he real parametric gradient learning law, or one of its robust modifi-
ations. In particular, it follows from (1)–(4) that the trajectory tracking
rror dynamics is given by

̇𝑁 (𝑡) = 𝐴ref 𝑒𝑁 (𝑡) + 𝐵
[

𝑢(𝑡) − 𝛼T𝑥𝑁 (𝑡) − 𝛽𝑟(𝑡) + 𝑓 ∗
𝑁 (𝑥𝑁 (𝑡))

]

,

𝑒𝑁 (𝑡0) = 𝑥0 − 𝑥ref ,0, 𝑡 ≥ 𝑡0, (10)

here the trajectory tracking error (6) is denoted by 𝑒𝑁 (⋅) in (10) to
mphasize it dependence on the size 𝑁 of the regressor vector.

The classic MRAC law is given by

(𝑡, 𝑥𝑁 , 𝛼̂, 𝛩̂) ≜ 𝛼̂T𝑥𝑁 + 𝛽𝑟(𝑡) −𝛷T
𝑁
(

𝑥𝑁
)

𝛩̂𝑁 ,

(𝑡, 𝑥𝑁 , 𝛼̂, 𝛩̂) ∈ [𝑡0,∞) × X × R𝑛 × R𝑁 , (11)
 o

7 
here 𝑥𝑁 ∶ [𝑡0,∞) → 𝛺 denotes the solution of (1) generated by
𝑁 (𝑡) = 𝜇(𝑡, 𝑥𝑁 (𝑡)𝛼̂(𝑡), 𝛩̂(𝑡)), the adaptive gains 𝛼̂ ∶ [𝑡0,∞) → R𝑛 and
̂𝑁 ∶ [𝑡0,∞) → R𝑁 verify the adaptive laws or learning laws

̇̂𝛼(𝑡) = −𝛾𝛼𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵, 𝛼̂(𝑡0) = 𝛼̂0, (12)
̇̂
𝑁 (𝑡) = 𝛾𝛷𝑁

(

𝑥𝑁 (𝑡)
)

𝑒T𝑁𝑃𝐵, 𝛩̂𝑁 (𝑡0) = 𝛩̂0, (13)

he adaptive rate matrices 𝛤𝛼 ∈ R𝑛×𝑛 and 𝛾 ∈ R𝑁×𝑁 are symmetric and
ositive-definite, and 𝑃 ∈ R𝑛×𝑛 denotes the symmetric, positive-definite
olution of the algebraic Lyapunov equation

𝑄 = 𝐴T
ref𝑃 + 𝐴ref (14)

ith 𝑄 ∈ R𝑛×𝑛 symmetric, positive-definite, and user-defined.
Considering the symmetric structure of the learning laws, in this

ection, for brevity, we let 𝛷𝑁
(

𝑥𝑁
)

stand for
[

𝑥T𝑁 , 𝛷T
𝑁
(

𝑥𝑁
)]T, 𝛩̂ for

𝛼̂T, 𝛩̂T]T, 𝑁 for 𝑛 + 𝑁 , (13) for both (12) and (13), and 𝜇(𝑡, 𝑥𝑁 , 𝛼̂, 𝛩̂)
or 𝜇(𝑡, 𝛩̂) = −𝛷T

𝑁
(

𝑥𝑁
)

𝛩̂𝑁 . Finally, we refer to (13) as the Euclidean or
eal parametric gradient learning law since it defines a trajectory in the
pace of real parameters R𝑁 . A comprehensive discussion on how this
earning law is derived is presented in Lavretsky and Wise (2012, Ch.
).

The performance of the control law (11) and of the learning law
13) can be assessed by analyzing the finite-dimensional, nonlinear,
ime-varying dynamical system

𝑒̇𝑁 (𝑡)
̇̃𝛩𝑁 (𝑡)

]

=
[

𝐴ref 𝐵𝛷T
𝑁
(

𝑥𝑁 (𝑡)
)

−𝛾𝛷𝑁
(

𝑥𝑁 (𝑡)
)

𝐵T𝑃 0

] [

𝑒𝑁 (𝑡)
𝛩̃𝑁 (𝑡)

]

+
[

𝑑(𝑡)
0

]

,

[

𝑒𝑁 (𝑡0)
𝛩̃𝑁 (𝑡0)

]

=
[

𝑥0 − 𝑥ref ,0
𝛩̃0

]

, 𝑡 ≥ 𝑡0, (15)

here 𝛩̃𝑁 (𝑡) ≜ 𝛩∗
𝑁−𝛩̂𝑁 (𝑡) denotes the parameter error, and 𝑑 ∶ [𝑡0,∞) →

𝑛 denotes a perturbation that depends on the approximation error

𝑁 (𝑥𝑁 (𝑡)) ≜ 𝑓
(

𝑥𝑁 (𝑡)
)

− 𝑓 ∗
𝑁
(

𝑥𝑁 (𝑡)
)

. (16)

f 𝑑(𝑡) ≡ 0, 𝑡 ≥ 𝑡0, then Lyapunov stability of (15) and asymptotic
onvergence of 𝑒𝑁 (⋅) to zero are guaranteed (Ioannou & Sun, 2012;
organ & Narendra, 1977a, 1977b; Sastry & Bodson, 2011). If 𝑑(𝑡) ≢

, 𝑡 ≥ 𝑡0, as it occurs in most problems of practical interest, then
oundedness of the adaptive gains in (15) is not guaranteed.

Over the past few decades, the study of robust adaptive control
ethods has developed a family of techniques that modify the basic
radient learning law to account for the possibility that 𝑑(𝑡) ≢ 0, which
ccurs also in the presence of unmatched uncertainties. This topic is a
entral theme of the standard texts on real parametric adaptive control
ike Farrell and Polycarpou (2006), Ioannou and Sun (2012), Lavretsky
nd Wise (2012), Narendra and Annaswamy (1989), Sastry and Bodson
2011). Among these robust techniques, it is worthwhile recalling the
-modification of MRAC, the 𝑒-modification of MRAC, various hard and
oft deadzone algorithms, the use of the projection operator, robust
ack-stepping methods, and error bounding methods, among others.

. The structure of RKHS embedding adaptive control

In this section, we describe the foundations of RKHS embedding
nd adaptive control under the assumption that the matched uncer-
ainty is the element of an RKHS. Specifically, we focus on five struc-
ural features that distinguish the classical parametric adaptive control
ramework from the proposed nonparametric framework. Sections 4.1
nd 4.2 below mirror Sections 3.1 and 3.2, respectively, and show
ow some features of classical MRAC can be lifted to an RKHS setting.
ections 4.3 and 4.4 below discuss the role of uncertainty classes and
moothness of uncertainties in the proposed nonparametric control
ramework, which do not find a counterpart in the existing literature

n parametric control systems.
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4.1. The approximation assumption in a native space

In typical applications of MRAC laws, to verify the uniform approx-
imation assumption stated in Definition 3.1, analysts usually choose
a basis for finite-dimensional approximations that is ‘‘rich enough’’ to
give good pointwise error estimates in the set of essentially bounded
functions 𝐿∞(𝛺). It is assumed that, for all 𝑥 ∈ 𝛺, the collection of
all the basis functions in ⋃

𝑁≥0
⋃

𝑖=1,…,𝑁 𝜙𝑖(𝑥) is dense in 𝐿∞(𝛺). Such
guarantee is sometimes referred to as the universal approximation

heorem (Park & Sandberg, 1991). For example, it is known that the
niform approximation assumption holds for polynomial bases over a
ompact subset of R𝑛 by the Weierstrass theorem, and it holds for a
ost of single or multilayer neural networks. For an account of the
ange of possibilities to satisfy the uniform approximation assumption,
ee also Farrell and Polycarpou (2006), Lavretsky and Wise (2012). In
articular, see Theorems 12.2 and 12.4 of Lavretsky and Wise (2012)
or a few precise statements. However, while universal approximation
heorems are popular and often cited in adaptive control approaches,
hey are rather weak in one important respect: they do not specify how
ast these approximations converge as functions of 𝑁 .

One of the most powerful features of native space embedding meth-
ds of adaptive control is that much stronger approximation guarantees
re automatically available owing to some basic properties of native
paces. In the following, we present some of these key properties.

efinition 4.1 (Admissible Kernel Functions). Let K ∶ X × X → R be a
ernel function. This kernel function is symmetric if K(𝑥, 𝑦) = K(𝑦, 𝑥) for
ll 𝑥, 𝑦 ∈ X. The kernel function K(⋅, ⋅) is of non-negative type if, for any
nteger 𝑁 ∈ N, any collection of 𝑁 points 𝛯𝑁 ≜ {𝜉1,… , 𝜉𝑁} ⊂ X, and

any set of real coefficients {𝛼1,… , 𝛼𝑁} ⊂ R, it holds that
𝑁
∑

𝑖,𝑗=1
K(𝜉𝑖, 𝜉𝑗 )𝛼𝑖𝛼𝑗 ≥ 0.

The kernel K(⋅, ⋅) is admissible if it is symmetric, non-negative, and that
the matrix [K(𝜉𝑖, 𝜉𝑗 )] is positive semi-definite for all choices of 𝑁 centers
𝛯𝑁 ≜ {𝜉𝑖 | 1 ≤ 𝑖 ≤ 𝑁} ⊂ X.

Definition 4.2 (Reproducing Kernel Hilbert Spaces). Given the admissible
kernel function K ∶ X × X → R, a reproducing kernel Hilbert space
(RKHS) is defined as

 ≜ span{K𝑥 | 𝑥 ∈ X}, (17)

here K𝑥 (⋅) ≜ K (⋅, 𝑥) and the closure is taken with respect to the inner
roduct

⟨

K𝑥,K𝑦
⟩

 ≜ K(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. Given an RKHS , the
nderlying K(⋅, ⋅) is known as the reproducing kernel function.

Box 5: Native spaces, also known as reproducing kernel Hilbert
spaces (RKHS), are Hilbert spaces defined as the closure of the
span of admissible kernel functions. In this paper, functional
uncertainties are considered elements of infinite-dimensional
RKHSs.

Given a reproducing kernel function K(⋅, ⋅), K𝑥(⋅) ∈  is sometimes
known as the kernel section. In the following, we refer to reproducing
kernel functions and admissible kernels as kernels, unless specified
otherwise.

Definition 4.2 means that the native space  consists of all functions
that can be written as the limit in the norm in  as 𝑁 → ∞ of finite
linear combinations of the functions {K𝜉𝑁,𝑖

| 1 ≤ 𝑖 ≤ 𝑁}. In this paper,
the reproducing kernel K(⋅, ⋅) is a user-defined function, and, often, the
associated kernel section K𝑥(⋅) is a radial basis function centered at
𝑥 ∈ X (Wendland, 2004). Before we further elaborate on Definition 4.2,
it is worthwhile recalling the notion of orthogonal projection on a

Hilbert space. K
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Definition 4.3 (Orthogonal Projections). Let  denote a Hilbert space.
The operator 𝛱 ∶  →  is an orthogonal projection if

⟨𝑓,𝛱𝑔⟩ = ⟨𝛱𝑓,𝛱𝑔⟩ = ⟨𝛱𝑓, 𝑔⟩ , (18)

for all 𝑓, 𝑔 ∈ .

For the statement of the next result and throughout this paper, let
𝐼 ∈  denote the identity operator.

Theorem 4.1. Let  denote a Hilbert space and let 𝛱 ∶  → 
be an orthogonal projection. Then, (𝐼 − 𝛱) is an orthogonal projection.
Furthermore, for all 𝑓 ∈ , it holds that 𝛱𝑓 is orthogonal to (𝐼 − 𝛱)𝑓 ,
hat is, ⟨𝛱𝑓, (𝐼 −𝛱)𝑓 ⟩ = 0.

An additional result that is essential to the comprehension of the
ivotal role of the orthogonal projection operator is the following. For
he statement of this result, let dist ∶  × → R+ denote the distance

between any two points in , and, as standard practice in functional
analysis, let the norm on  be induced by the inner product, and
the distance on  be induced by this norm. Finally, we define the
distance between a generic point in 𝑓 ∈  and a subset 𝑁 ⊆ 
as dist(𝑓,𝑁 ) ≜ inf𝑓𝑁∈𝑁

dist(𝑓, 𝑓𝑁 ). In the case of singleton sets, the
distance between a point and a set reduces to the earlier definition of
distance between any two points. Thus, the same notation is used for
both notions.

Theorem 4.2. Let  denote a Hilbert space, let 𝛱𝑁 ∶  →  be
an orthogonal projection, and let 𝑁 ⊆  be closed and linear. Then,
𝑓𝑁 = 𝛱𝑁𝑓 if and only if 𝑓𝑁 ∈ 𝑁 and dist(𝑓𝑁 ,) = dist(𝑓𝑁 , 𝑓 ).

This result, in practice, affirms that 𝛱𝑁𝑓 is the point in the subspace
𝑁 that is closest to 𝑓 ∈ . This notion extends the classical notion of
orthogonal projection in R𝑛.

Box 6: Given a function 𝑓 in an RKHS  and a user-defined
tolerance 𝜖, there exist 𝑁 points in the state space, where 𝑓
can be approximated with the desired tolerance. Such points,
known as centers, can be used to define a finite-dimensional
RKHS 𝑁 that approximates the original space .

Let us resume our considerations about approximations in an RKHS.
By the definition of the closed linear span, we deduce from (17) that,
for any 𝑓 ∈  and 𝜖 > 0, there exist 𝑁 ∈ N, a set of centers

𝛯𝑁 ≜
{

𝜉1,… , 𝜉𝑁
}

⊂ 𝛺 ⊂ X, (19)

and a collection of coefficients 𝛩∗ ≜ {𝜃∗1 ,… , 𝜃∗𝑁} such that
‖

‖

‖

‖

‖

‖

𝑓 −
𝑁
∑

𝑖=1
K𝜉𝑖𝜃

∗
𝑖

‖

‖

‖

‖

‖

‖

≤ 𝜖. (20)

In other words, if 𝑓 ∈  and we set 𝜖 > 0, then there always exists a
set of centers 𝛯𝑁 and a subspace

𝑁 ≜ span
{

K𝜉𝑖 |𝜉𝑖 ∈ 𝛯𝑁 , 1 ≤ 𝑖 ≤ 𝑁
}

(21)

such that the uniform approximation assumption outlined in Defini-
tion 3.1 holds for 𝑓 ∗

𝑁 ≜
∑𝑁

𝑖=1 K𝜉𝑖𝜃
∗
𝑖 . In fact, we can use the -orthogonal

projection 𝛱𝑁 ∶  → 𝑁 to define a set of coefficients 𝛩∗
𝑁 that

yield approximations in 𝑁 that are optimal for this representation
in that they have minimal error. This is why we claim that a kind of
approximation assumption is easy to demonstrate in a native space from
its definition.

All kernel functions considered in this paper are bounded on the
diagonal. As discussed in the following, this property is essential to
further elaborate on the approximation error using RKHSs.

Definition 4.4 (Bounded on the Diagonal Kernels). Let K(⋅, ⋅) be the
admissible kernel that defines the native space . The kernel function
is bounded on the diagonal if there is a constant K̄ > 0 such that

2 ̄ 2
(𝜉, 𝜉) ≜ ‖K𝜉‖ ≤ K , for all 𝜉 ∈ X. (22)
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The property of boundedness on the diagonal is satisfied for many
standard choices of kernels defined on R𝑛, including the Gaussian,
obolev-Matern, inverse multiquadric, or Wendland kernels (Wend-
and, 2004). The norm in  dominates the norm in 𝐿∞(𝛺) in most cases

of interest (Paulsen & Raghupathi, 2016; Saitoh & Sawano, 2016). To
prove this fact, we introduce the evaluation functional 𝐸𝑥 ∶  → R for
∈ X, which is defined so that

𝑥𝑓 ≜ 𝑓 (𝑥), for all 𝑓 ∈  and 𝑥 ∈ X. (23)

Box 7: All RKHS considered in this paper are bounded on the
diagonal. A consequence of this property is that both the eval-
uation operator and its adjoint are uniformly bounded. Since
these operators are linear, uniform boundedness also implies
their continuity.

If the kernel underlying an RKHS is bounded on the diagonal,
hen the operator norm ‖𝐸𝑥‖ = ‖𝐸∗

𝑥‖ is uniformly bounded. Indeed,
considering 𝐸𝑥 as acting on  into R, we have that ‖𝐸𝑥‖ ≤ K̄ in the
operator norm since, by the Cauchy–Schwarz inequality,

|𝐸𝑥𝑓 | = | ⟨𝑓,K𝑥⟩ | ≤ ‖K𝑥‖‖𝑓‖ ≤
√

K (𝑥, 𝑥)‖𝑓‖ ≤ K̄‖𝑓‖ , (24)

for all 𝑓 ∈ . This same line of reasoning implies that all continuous
functions in  are bounded on X, and, in fact, 𝐶(X) ↪ .

Any real Hilbert space  with inner product ⟨⋅, ⋅⟩ is an RKHS if and
only if all of the linear evaluation functionals are bounded (Aronszajn,
1950; Wendland, 2004). In this case, it follows from (20) and (24) that

1
K

|

|

|

|

|

|

𝑓 (𝑥) −
𝑁
∑

𝑖=1
𝜃∗𝑖 K𝜉𝑖 (𝑥)

|

|

|

|

|

|

≤
‖

‖

‖

‖

‖

‖

𝑓 −
𝑁
∑

𝑖=1
𝜃∗𝑖 K𝜉𝑖

‖

‖

‖

‖

‖

‖

≤ 𝜖, for all 𝑓 ∈ . (25)

Box 8: The use of RKHSs allows quantifying explicitly in terms
of 𝑁 the pointwise approximation error throughout the state
space for approximations using 𝑁 basis functions.

We conclude from these observations that being able to prove (20)
hrough RKHS theory allows addressing the performance of the uniform
pproximation assumption in terms of (9). The kernels employed in this
aper always allow drawing this conclusion. In fact, as anticipated, we
hoose kernels such that ‖𝐸𝑥‖ ≤ K̄ for all 𝑥 ∈ X in the operator norm

for some constant K̄ > 0.

.2. The nonparametric gradient learning law

In this section, we present the first, and most simple adaptive
ontrol system in the nonparametric setting. In particular, we discuss
ow, by interpreting the nonlinear uncertainty in (1) as a type of
unctional uncertainty, the adaptive law can be transposed from the
arametric setting to the nonparametric setting.

Let 𝑦(𝑡) ≜ 𝐸𝑥(𝑡)𝑓 = 𝑓 (𝑥(𝑡)), 𝑡 ≥ 𝑡0, for some unknown uncertain
function 𝑓 ∈ , where  is an RKHS. Thus, introduce a time-
dependent, nonparametric adaptive gain 𝑓 (𝑡, ⋅) ∈  associated to 𝑓 , and
a function adaptive error 𝑓 (𝑡, ⋅) ≜ 𝑓 − 𝑓 (𝑡, ⋅). Finally, define the output
prediction 𝑦̂(𝑡), and the output error 𝑦̃(𝑡) as

̂(𝑡) = 𝐸𝑥(𝑡)𝑓 (𝑡, ⋅) = 𝑓 (𝑡, 𝑥(𝑡)), (26)

𝑦̃(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡) = 𝐸𝑥(𝑡)𝑓 (𝑡, ⋅), (27)

respectively.
Let  be an RKHS and 𝐹 ∶  → R be such that 𝐹 (𝑓 ) = ⟨𝑓, 𝑓⟩

for all 𝑓 ∈ . The Fréchet derivative of 𝐹 (⋅) at 𝑓 ∈  is given by the
linear functional 𝐷 ∶  → R such that

𝐷𝑔 = 2 ⟨𝑔, 𝑓⟩ , for all 𝑔 ∈ . (28)

Now, define the error functional

𝐽
(

𝑓
)

≜ 1 𝑦̃T𝑦̃ = 1 ⟨

𝐸 𝑓,𝐸 𝑓
⟩

= 1⟨𝐸∗ 𝐸 𝑓, 𝑓
⟩

(29)

2 2 𝑥(⋅) 𝑥(⋅) R 2 𝑥(𝑡) 𝑥(𝑡) 

m
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where 𝐸∗
𝑥(⋅) ∶ R →  denotes the adjoint of 𝐸𝑥(⋅), and the operator

∗
𝑥(⋅)𝐸𝑥(⋅) is such that 𝐸∗

𝑥(𝑡)𝐸𝑥(𝑡) ∶  →  for each 𝑡 ∈ [𝑡0,∞). Proceeding
s in Ioannou and Fidan (2006, App. B), it follows from (28) that the
onparametric adaptive law for 𝑓 (𝑡, ⋅) is given by

𝜕𝑓
𝜕𝑡

(𝑡, ⋅) = −𝛾𝐷𝐽
(

𝑓 (𝑡)
)

= −𝛾𝐸∗
𝑥(𝑡)𝐸𝑥(𝑡)𝑓 (𝑡, ⋅) = −𝛾𝐸∗

𝑥(𝑡)𝑦̃(𝑡), 𝑡 ≥ 𝑡0, (30)

where 𝛾 > 0 is a user-defined adaptive gain. It is worthwhile noting
that the arguments in Ioannou and Fidan (2006, App. B) yield in finite
dimensions, whereas the proposed arguments yield on the infinite-
dimensional space . In Section 5, we formally prove the effectiveness
of an MRAC system, whose nonparametric law has the gradient law (30)
as a special case. For this reason, and to focus on the analogies and
differences with the results in Section 3.2, we leave (30) substantially
unproven.

It is apparent from (30) that, for all 𝑡 ∈ [𝑡0,∞), the adjoint operator
𝐸∗
𝑥(𝑡) of the evaluation functional 𝐸𝑥(𝑡) defines the generalized, nonpara-
etric gradient learning law. As for the gradient law in the Euclidean

pace R𝑛, the generalized gradient law implies that the nonparametric
unction error 𝑓 (𝑡, ⋅) evolves in ‘‘the local direction of fastest decrease’’
f the functional 𝐽

(

𝑓
)

. In (30), however, the local descent direction is
ot a vector, but a direction in the function space .

Next, consider the plant dynamics (1) and assume that 𝐴 is known.
pplying the control input

(𝑡) = −𝛼T𝑥(𝑡) + 𝛽𝑟(𝑡) − 𝐸𝑥(𝑡)𝑓 (𝑡, ⋅), 𝑡 ≥ 𝑡0, (31)

here 𝑓 (𝑡, ⋅) satisfies (30), the trajectory tracking error dynamics and
he function adaptive error dynamics are captured by

𝑒̇(𝑡)
𝜕𝑓 (𝑡, ⋅)

𝜕𝑡

⎫

⎪

⎬

⎪

⎭

=

[

𝐴ref 𝐵𝐸𝑥(𝑡)
−𝛾𝐸∗

𝑥(𝑡)𝐵
T𝑃 0

]

{

𝑒(𝑡)
𝑓 (𝑡, ⋅)

}

,

{

𝑒(𝑡0)
𝑓 (𝑡0, ⋅)

}

=
{

𝑥0 − 𝑥𝑟,0
𝑓0(⋅)

}

, 𝑡 ≥ 𝑡0, (32)

Eq. (32) defines a DPS since the equation for 𝜕𝑓 (𝑡, 𝑥)∕𝜕𝑡 is a PDE, not
an ODE.

Box 9: The proposed nonparametric adaptive framework mir-
rors in several key elements the classical parametric adaptive
framework. However, in the nonparametric approach, the
adaptive law associated with the functional uncertainty is a
distributed parameter system, whereas in the classical paramet-
ric adaptive framework, this adaptive law reduces to a matrix
ordinary differential equation.

The DPS (32) should be carefully compared to (15) with 𝑑(𝑡) ≡ 0,
≥ 𝑡0, that arises in the real parametric theory. It is apparent how (15)
volves in a finite-dimensional space, namely, R𝑛 × R𝑁 , whereas (32)
volves in a generally infinite-dimensional space, namely R𝑛 × . For

this reason, the control input (31) cannot be implemented in practice,
and it is necessary to approximate (31) to obtain realizable control
inputs; this point is addressed in the second paper of this two-part
work. If we generate a collection of approximations of (32) as 𝑁 → ∞,
then the limiting behavior of the closed-loop response 𝑥𝑁 (⋅) that can
be obtained in practice converges to that of (32) that, for this reason,
(32) is said to define the limiting DPS system.

In conclusion, this section has shown that an additional structural
difference between real parametric adaptive control and RKHS embed-
ding methods lies in the fundamental role played by the limiting DPS in
the latter approach. It is safe to say that there is no such simple analog
of the limiting DPS in classical treatments of real parametric adaptive
control theory since real parametric adaptive control selects an a priori
arameterization of the functional uncertainty.

.3. Functional uncertainty classes

Another structural difference between real parametric and nonpara-

etric adaptive control techniques lies in their definition and use of
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functional uncertainty classes. A central tenet of robust control theory
is that it guarantees both the stability of the closed-loop system and
its performance within some user-defined levels for a wide variety of
‘‘nearby’’ uncertain systems. As we explain in this section, invoking the
approximation assumption in terms of the norm on a native space, there
are associated natural choices of functional uncertainty classes. The
key idea is that the controller performance in native space embedding
methods is measured relative to the offline rates of convergence of best
approximations for these functional uncertainty classes.

Three functional uncertainty classes are explored in this paper.
These classes are formally defined as follows.

Box 10: The proposed nonparametric adaptive framework al-
lows addressing functional uncertainties within classes that
are considerably broader than those that can be addressed
employing classical parametric control frameworks.

Definition 4.5 (Functional Uncertainty Classes). Let 𝑁 ∈ N, 𝑅 > 0, and
𝜖 > 0. The real parametric uncertainty class of radius 𝑅 is defined as

𝛷𝑁 ,𝑅 ≜
{

𝑓 = 𝛷T
𝑁𝛩𝑁 | 𝛩𝑁 ∈ R𝑁 , ‖𝑓‖ ≤ 𝑅

}

⊂ span{𝛷𝑁}. (33)

The nonparametric uncertainty class of radius 𝑅 and projection error less
than 𝜖 is defined as

𝑁,𝜖,𝑅 ≜
{

𝑓 ∈  | ‖(𝐼 −𝛱𝑁 )𝑓‖ ≤ 𝜖, ‖𝑓‖ ≤ 𝑅
}

⊂ . (34)

The nonparametric uncertainty class of radius 𝑅 is defined as

𝑅 ≜
{

𝑓 ∈  | ‖𝑓‖ ≤ 𝑅
}

⊂ . (35)

The set 𝛷𝑁 ,𝑅 is an example of a real parametric uncertainty class
ince its elements are completely characterized by the 𝑁 real coeffi-
ients in 𝛩𝑁 that appear in representations in 𝑁 . As discussed in
ection 3, this class is employed either implicitly or explicitly in the
verwhelming majority of existing adaptive control schemes. Member-
hip in 𝛷𝑁 ,𝑅 is characterized by the inequality 𝛩T

𝑁G𝑁𝛩𝑁 ≤ 𝑅2, where
𝑁 ≜ [

⟨

𝜙𝑖, 𝜙𝑗
⟩

 ](𝑖,𝑗) denotes the fixed Grammian matrix and 𝜙𝑖(⋅),
∈ {1,… , 𝑁}, the 𝑖th element of 𝛷𝑁 .

The uncertainty class 𝑁,𝜖,𝑅 plays a pivotal role in this paper be-
ause it captures the uncertainty due to the complexity of capturing 𝑓 ∈

by projecting 𝑓 into 𝑁 ⊂ . This class will play a key role in the
econd paper of this two-part work, where the practical implementation
f the proposed nonparametric adaptive control framework will be put
n place.

Finally, if 𝑅 can be set arbitrarily large, then 𝑅 captures the ideal
ncertainty set as it comprises all uncertainties of a given magnitude or
ess. The uncertainty classes 𝑁,𝜖,𝑅 and 𝑅 are said to be nonparametric.
ndeed, if  is infinite-dimensional, then functions in these uncertainty
lasses cannot be parameterized using representations in terms of a
inite set of scalars and a finite collection basis functions. If  is
nfinite-dimensional, then, irrespectively of how small we choose 𝜖, we
ave that, for any 𝑁 and 𝑅, 𝑁,𝜖,𝑅 ⊄ 𝛷𝑁 ,𝑅. In general, it holds that

𝛷𝑁 ,𝑅 ⊂ 𝑁,𝜖,𝑅 ⊂ 𝑅, (36)

nd, for the scope of this paper, 𝑁 , 𝑅, and 𝜖 are to be considered as
ser-defined. As discussed in the second paper of this two-part work,
n practical implementations, applying the proposed control systems,
ltimate bounds on the tracking error can be estimated in terms of
hese parameters, whereas classical parametric adaptive control theory
oes not allow such explicit bounds. As discussed in Powell, Kurdila,
’Afflitto, Wang, and Guo (2024) and Kurdila, L’Afflitto, and Burns
2025, Ch. 6), employing data-driven methods, 𝑁 , 𝑅, and 𝜖 can be
hosen adaptively by the control system to ultimately drive the tracking
rror to zero or minimize some cost functions. However, this point is
eyond the scope of this work.

Note that 𝛷𝑁 ,𝑅 is a compact, convex subset of the
inite-dimensional normed space 𝑁 ≜ span(𝛷𝑁 ) ⊆ . However,

and  are only closed, convex, norm-bounded subsets of the
𝑁,𝜖,𝑅 𝑅
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generally infinite dimensional space . Furthermore, while 𝑅 and
𝑁,𝜖,𝑅 are closed and bounded, they are compact if and only if  is
finite-dimensional.

Overall, guarantees of the performance of control strategies for sys-
tems having functional uncertainty in the classes 𝛷𝑁 ,𝑅, 𝑁,𝜖,𝑅, and 𝑅
improve for smaller uncertainty classes. If we only consider the smallest
functional uncertainty class 𝛷𝑁 ,𝑅, it is easy to derive excellent bounds
on performance in a variety of situations using classical techniques from
real parametric adaptive control theory (Lavretsky & Wise, 2012, Ch.
9, 11). However, general and precise guarantees, which are explicit in
the number 𝑁 , for example, on the performance of adaptive control
methods when 𝑓 ∈ 𝑁,𝜖,𝑅 or just 𝑓 ∈ 𝑅 are unstudied. The second
aper of this two-part work addresses this key point by correlating
ltimate bounds on the trajectory tracking error to the parameters 𝑁 ,
, and 𝑅 that define the uncertainty classes 𝛷𝑁 ,𝑅, 𝑁,𝜖,𝑅, and 𝑅 in
hich uncertainties are assumed to lay.

.4. Smoothness, hypothesis spaces, and controller performance

The proposed nonparametric adaptive control approaches allow
tudying how the smoothness of the functional uncertainty 𝑓 and the
moothness of the choice of basis influences the performance of the
losed-loop control scheme. The authors are unaware of any analogous
heoretical setting in real-parametric adaptive control for ODEs.

In the proposed setting, it possible to choose a native space so that
t is filled with ‘‘not-so-smooth’’ functions that lie just inside 𝐿∞(𝛺),

where 𝛺 ⊂ X denotes some subset containing the closed-loop plant
trajectory, or choose kernels that generate native spaces of very smooth
functions. In this work, and especially in its second part, we will
show that choosing the native space  in which to formulate the
adaptive control problem has important implications on the closed-loop
performance, and if we happen to know that the functional uncertainty
lies in a smoother native space, then there can be good reasons to use
such a smoother space for generating controllers.

5. The nonparametric control law and the limiting DPS

In this section, we provide MRAC laws for plants in the same
form as (1) while elaborating on the results discussed in Section 4 in
general and Section 4.2 in particular. Successively, we study sufficient
conditions for the existence and uniqueness of solutions as well as
forward completeness. In the following, we newly assume that 𝐴 in (1)
is unknown, and the nonlinear matched uncertainty 𝑓 is contained in
the native space  of real-valued functions over X ≜ R𝑛. The native
space  is defined in terms of the admissible kernel K ∶ X × X → R.

5.1. MRAC laws employing RKHS to capture nonlinearities

As summarized in Section 4, the RKHS embedding technique ini-
tially views the function 𝑓 ∈  as a nonparametric, functional uncer-
tainty, so that, by (23) and (17), it holds that

𝑓 (𝑥) = 𝐸𝑥𝑓 = ⟨K𝑥, 𝑓⟩ , for all 𝑥 ∈ X. (37)

Thus, to emphasize that the original plant model in (1) is understood
in the sense of RKHS embedding, we rewrite it as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵
(

𝑢(𝑡) + 𝐸𝑥(𝑡)𝑓
)

, 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0, (38)

or, alternatively, as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵
(

𝑢(𝑡) +
⟨

K𝑥(𝑡), 𝑓
⟩



)

, 𝑥(𝑡0) = 𝑥0.

As in the usual real parametric MRAC for ODEs, we begin the study
of native space embedding MRAC by assessing the matching conditions.
We propose an ideal control law

T
𝜇(𝑡, 𝑥, 𝛼,K𝑥, 𝑓 ) ≜ 𝛼 𝑥 + 𝛽𝑟(𝑡) − ⟨K𝑥, 𝑓⟩ ,
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(𝑡, 𝑥, 𝛼,K𝑥, 𝑓 ) ∈ [𝑡0,∞) × X × R𝑛 × ×, (39)

nd the ideal control input
∗(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝛼,K𝑥(𝑡), 𝑓 ), 𝑡 ≥ 𝑡0, (40)

here 𝑥 ∶ [𝑡0,∞) → X denotes a solution of (1) with control input 𝑢∗(𝑡)
nd 𝛼 and 𝛽 verify the matching condition (3) and (4), respectively.
ote that, since 𝐴 is unknown, 𝛼 is unknown. Furthermore, 𝑓 is
nknown. For these reasons, (40) is considered an ideal control input.
t is also worthwhile noting that the control law (39) allows for 𝑥 ∈ X,
hereas the classical control law (11) requires that 𝑥 ∈ 𝛺 ⊂ X or,
lternatively, that the parameterization of the uncertainty by means of
he regressor vector to yield for all 𝑥 ∈ X.

Box 11: Similarly to the classical parametric framework, the
nonparametric adaptive control framework requires the match-
ing conditions to be verified to assure the existence of at least
one ideal controller able to steer the plant trajectory toward the
reference trajectory.

In the problem at hand, the matching conditions depend on the
KHS space  and the choice of kernel K(⋅, 𝑥), 𝑥 ∈ X, that appears

n ⟨K𝑥, 𝑓⟩ . To ensure that it is possible for trajectories of (1) to track
rajectories of the reference model (2), we set

ref𝑥𝑟(𝑡) + 𝐵ref 𝑟(𝑡) = 𝐴𝑥(𝑡) + 𝐵
(

𝛼T𝑥(𝑡) + 𝛽𝑟(𝑡)

−
⟨

K𝑥(𝑡), 𝑓
⟩

 +
⟨

K𝑥(𝑡), 𝑓
⟩



)

,

=
(

𝐴 + 𝐵𝛼T
)

𝑥(𝑡) + 𝐵𝛽𝑟(𝑡), 𝑡 ≥ 𝑡0.

y comparing coefficients, we recover the classical matching condi-
ions (3) and (4). Furthermore, if (3) and (4) are verified, then the
onparametric feedback control law 𝜇(⋅) is compatible in the native
pace embedding method for any choice of RKHS  and kernel K (⋅, ⋅).

To design nonparametric MRAC laws that account for uncertainties
n both 𝐴 and 𝑓 , we consider the nonparametric adaptive control input

(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝛼̂(𝑡),K𝑥(𝑡), 𝑓 (𝑡, ⋅)), 𝑡 ≥ 𝑡0, (41)

here the adaptive gain 𝛼̂(𝑡) ∶ [𝑡0,∞) → R𝑛 verifies the adaptive law

̇̂𝛼(𝑡) = −𝛤𝛼𝑥(𝑡)𝑒T(𝑡)𝑃𝐵, 𝛼̂(𝑡0) = 𝛼̂0, (42)

and the adaptive gain 𝑓 (𝑡, ⋅) ∶ [𝑡0,∞) →  verifies the ideal adaptive law

𝜕𝑓 (𝑡, ⋅)
𝜕𝑡

= 𝛾𝑓K(⋅, 𝑥(𝑡))𝑒T(𝑡)𝑃𝐵

= 𝛾𝑓𝐸
∗
𝑥(𝑡)𝐵

T𝑃𝑒(𝑡), 𝑓 (𝑡0, ⋅) = 𝑓0(⋅). (43)

In (42) and (43), 𝛤𝛼 ∈ R𝑛×𝑛 is a user-defined, symmetric, and positive-
definite matrix of adaptive rates, 𝑥(⋅) denotes the closed-loop plant
trajectory, 𝑒(⋅) is defined in (6), and 𝑃 denotes the symmetric and
positive-definite solution of (14), and 𝛾𝑓 > 0 is a user-defined adaptive
rate. It is worthwhile noting that (43) is a PDE, and, hence, the MRAC
system given by (2) and (41)–(43) is considered nonparametric. The
reason why (43) is referred to as an ideal adaptive law will become
apparent in the second paper of this two-part work.

With the control input (41), it follows from (6) and (2) that the
trajectory tracking error dynamics are captured by

̇(𝑡) = 𝑥̇(𝑡) − 𝑥̇𝑟(𝑡)

= 𝐴ref 𝑒(𝑡) − 𝐵
(

𝛼̃T(𝑡)𝑥(𝑡) − ⟨K𝑥(𝑡), 𝑓 (𝑡, ⋅)⟩
)

,

𝑒(𝑡0) = 𝑥0 − 𝑥𝑟,0, 𝑡 ≥ 𝑡0. (44)

Collecting (44), (42), and (43), we can write the limiting DPS error
equations in matrix operator form

𝜕
𝜕𝑡

⎧

⎪

⎨

⎪

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

=
⎡

⎢

⎢

⎣

𝐴ref −𝐵𝑥T(𝑡) 𝐵𝐸𝑥(𝑡)
𝛤𝛼𝑥(𝑡)𝐵T𝑃 0 0
−𝛾 K 𝐵T𝑃 0 0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

, 𝑡 ≥ 𝑡0,
⎩ ⎭

𝑓 𝑥(𝑡)
⎩ ⎭

11 
(45)

with the same initial conditions as in (44), (42), and (43), where 𝛼̃(𝑡) ≜
𝛼 − 𝛼̂(𝑡) and 𝑓 (𝑡, ⋅) ≜ 𝑓 − 𝑓 (𝑡, ⋅). The limiting DPS error equations can
be expressed also as

𝜕
𝜕𝑡

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

𝐴ref −𝐵𝑥T(𝑡) 𝐵𝐸𝑥(𝑡)
𝛤𝛼𝑥(𝑡)𝐵T𝑃 0 0
−𝛾𝑓𝐸∗

𝑥(𝑡)𝐵
T𝑃 0 0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

. (46)

ote that, similarly to (32), in (46), we do not have a matrix of real
umbers but an operator since it contains the bounded linear operators
𝑥 ∶  → R and 𝐸∗

𝑥 ∶ R → . Remarkably, the state of (45), or, equiv-
lently, (46), can be partitioned into three components. The first two
omponents, 𝑒(⋅) and 𝛼̃(⋅), reside in the finite-dimensional space R𝑛 and
he third component, 𝑓 (⋅, ⋅), resides in the infinite-dimensional space
. Thus, the closed-loop plant dynamics are still governed by an ODE.
owever, due to the coupling among closed-loop plant dynamics and
daptive gain dynamics, their stability properties need to be addressed
t unison and using stability theory for DPS systems.

The next theorem proves the effectiveness of the proposed non-
arametric MRAC approach. Specifically, the next result proves the
oundedness of (46) and the convergence of the trajectory tracking
rror 𝑒(⋅) despite the uncertainties in 𝐴 and 𝑓 . For the statement of
his theorem, recall that, by assumption, the scalar-valued reference
ommand input 𝑟(⋅) is bounded on [𝑡0,∞), that is, 𝑟 ∈ 𝐿∞ (

[𝑡0,∞),R
)

.
Before we proceed to the analysis of the limiting DPS, we note one

echnical issue that arises when restricting attention to kernels that are
ounded on the diagonal. This paper always chooses the kernel K to be
ounded on the diagonal over X ≜ R𝑛 to simplify some proofs of well-
osedness, convergence, and stability. However, as noted above, the
ative spaces induced by such kernels contain only functions bounded
n R𝑛. This would eliminate the study of many common systems
or which 𝑓 is unbounded over X, such as polynomial uncertainties.
n such cases, we eventually restrict the analysis to arbitrarily large
ompact sets over which the kernel is bounded on the diagonal. Such a
estriction is not particularly constraining since 𝐴ref is Hurwitz and 𝑟(⋅)
s uniformly bounded, it follows from (2) that the reference trajectory
s 𝑥𝑟(⋅) is bounded. Hence, in practice, it is possible to find a compact
ubset of X containing both 𝑥𝑟(⋅) and 𝑥(⋅) at all times. For now, we
ssume at the outset that K ∶ X × X → R is bounded on the diagonal
ver all of X.

Box 12: The proposed framework relies on Lyapunov-like ar-
guments to certify the boundedness of the trajectory tracking
error and of the adaptive gains at all times. Barbalat’s lemma is
employed to prove the asymptotic convergence of the trajectory
tracking error to zero. Since the adaptive laws evolve over a
DPS, despite the arguments underlying the Lyapunov analysis
of classical adaptive control systems, forward completeness
of the adaptive control system does not follow from argu-
ments related to the compactness of level sets of the Lyapunov
function.

Theorem 5.1. Consider the limiting DPS (46), suppose that the kernel
K (⋅, ⋅) that defines the native space  is bounded on the diagonal, and
(46) is forward complete. Then, the trajectory of the limiting error DPS is
uniformly bounded, and

lim
𝑡→∞

𝑒(𝑡) = 0

uniformly in 𝑡0 ∈ [0,∞).

Proof. Consider the Lyapunov function candidate

𝑉
(

𝑒, 𝛼̃, 𝑓
)

≜ ⟨𝑃𝑒, 𝑒⟩R𝑛 +
⟨

𝛤−1
𝛼 𝛼̃, 𝛼̃

⟩

R + 𝛾−1𝑓
⟨

𝑓, 𝑓
⟩

 ,
(

𝑒, 𝛼̃, 𝑓
)

∈ R𝑛 × R𝑛 ×.

(47)
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Before we differentiate 𝑉 (⋅, ⋅, ⋅) and apply Lyapunov-like arguments to
the trajectories of (46), we make several observations. Since 𝛼̃(𝑡) =

− 𝛼̂(𝑡), 𝑡 ≥ 𝑡0, and 𝛼 is constant, ̇̃𝛼(𝑡) = − ̇̂𝛼(𝑡). Per definition,
̃(𝑡, ⋅) = 𝑓 − 𝑓 (𝑡, ⋅), 𝑡 ≥ 𝑡0, 𝑓 is constant, and 𝑓 (𝑡, ⋅) is computed as
he solution of (43), whose right-hand side is continuous. Indeed, if
↦ 𝑥(𝑡) is continuous on [𝑡0,∞), then it follows from (23) and the

oundedness on the diagonal of K(⋅, ⋅) that 𝑡 ↦ 𝐸𝑥(𝑡) is continuous
ince 𝐸𝑥 is uniformly bounded and linear. Furthermore, 𝐸∗

𝑥 is uniformly
bounded and linear, and, hence, if 𝑡 ↦ 𝑥(𝑡) is continuous on [𝑡0,∞),
then 𝑡 ↦ 𝐸∗

𝑥(𝑡) is continuous. Furthermore, it follows from (6) that
𝑒(𝑡) = 𝑥(𝑡)−𝑥𝑟(𝑡), 𝑡 ≥ 𝑡0. Now, 𝑡 ↦ 𝑥𝑟(𝑡) is continuous on [𝑡0,∞) since the
reference trajectory is the Carathéodory (hence, absolutely continuous)
solution of (2), whose right-hand side is continuous. Thus, if 𝑡 ↦ 𝑥(𝑡)
is continuous on [𝑡0,∞), then 𝑡 ↦ 𝑒(𝑡) is continuous. Finally, 𝑡 ↦ 𝑥(𝑡) is
omputed as the Carathéodory continuous solution of (38) with control
nput (41). Thus, the right-hand side of (43) is continuous on [𝑡0,∞),
̃ ∈ 𝐶1([𝑡0,∞),), and ̇̃𝑓 (𝑡, ⋅) = − ̇̂𝑓 (𝑡, ⋅).

Differentiating (47) with respect to time, it follows from (28) that

𝑉̇
(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

= ⟨𝑃 𝑒̇(𝑡), 𝑒(𝑡)⟩R𝑛 + ⟨𝑃𝑒(𝑡), 𝑒̇(𝑡)⟩R𝑛

+ 2
(

⟨

𝛤−1
𝛼 𝛼̃T(𝑡), ̇̃𝛼(𝑡)

⟩

R + 𝛾−1𝑓

⟨

𝑓 (𝑡, ⋅) , ̇̃𝑓 (𝑡, ⋅)
⟩



)

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛

− 2
⟨

𝛼̃(𝑡), 𝑥(𝑡)𝑒T(𝑡)𝑃𝐵 + 𝛤−1
𝛼

̇̂𝛼(𝑡)
⟩

R

+ 2
⟨

𝑓 (𝑡, ⋅) ,K𝑥(𝑡)𝑒
T(𝑡)𝑃𝐵 − 𝛾−1𝑓

̇̂𝑓 (𝑡, ⋅)
⟩


, (48)

for all 𝑡 ≥ 𝑡0. Thus, along the trajectories of (46), it holds that

𝑉̇
(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

= −𝑒T𝑄𝑒(𝑡) ≤ 0, 𝑡 ≥ 𝑡0, (49)

and, consequently, the trajectories of (46) are bounded over [𝑡0,∞)
uniformly in 𝑡0 ≥ 0.

Since 𝑉
(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

, 𝑡 ∈ [𝑡0,∞), is non-increasing, nonnegative,
and bounded from below, we deduce that

𝑒 ∈ 𝐿∞ (

[𝑡0,∞),R𝑛) , 𝛼̃ ∈ 𝐿∞ (

[𝑡0,∞),R𝑛) ,

𝛽 ∈ 𝐿∞ (

[𝑡0,∞),R
)

, 𝑓 ∈ 𝐿∞ (

[𝑡0,∞),
)

.

Furthermore, by the Weierstrass theorem, the limit 𝑉∞ ≜ lim
𝑡→∞

𝑉 (𝑡) exists
and is finite. Thus, by integrating 𝑉̇

(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

, and using the
finite limit 𝑉∞, we conclude that 𝑒 ∈ 𝐿2 ([𝑡0,∞),R𝑛).

Next, we want to show that 𝑒̇ ∈ 𝐿∞ (

[𝑡0,∞),R𝑛). It follows from (44)
that

‖𝑒̇(𝑡)‖X ≤ ‖𝐴ref‖‖𝑒‖𝐿∞([𝑡0 ,∞),R𝑛) + ‖𝐵‖‖𝑒‖𝐿∞([𝑡0 ,∞),R𝑛)‖𝛼̃‖𝐿∞([𝑡0 ,∞),R𝑛)
+ ‖𝑟‖𝐿∞([𝑡0 ,∞),R𝑛)‖𝛽‖𝐿∞([𝑡0 ,∞),R𝑛) + ‖𝐵‖‖𝐸𝑥(𝑡)‖ ‖𝑓 (𝑡, ⋅) ‖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
,

≤‖𝑓 (𝑡,⋅)‖𝐿∞([𝑡0 ,∞),)
(50)

for all 𝑡 ∈ [𝑡0,∞). Now, since the kernel function is bounded on the
diagonal, it follows from (24) that ‖𝐸𝑥(𝑡)‖ < K̄ < ∞, and, hence, 𝑒̇ ∈
𝐿∞ (

[𝑡0,∞),R𝑛). Since 𝑒 ∈ 𝐿∞ (

[𝑡0,∞),R𝑛) ∩ 𝐿2 ([𝑡0,∞),R𝑛), Barbalat’s
lemma implies that lim𝑡→∞ 𝑒(𝑡) = 0 uniformly in 𝑡0 ≥ 0.

Several remarks on Theorem 5.1 and its proof are in order.

Remark 5.1. Since 𝑓 (𝑡, ⋅) ∈ 𝐶1([𝑡0,∞),), the composition rules on
Fréchet derivatives ensure the identity
𝑑
𝑑𝑡

(⟨

𝑓 (𝑡, ⋅), 𝑓 (𝑡, ⋅)
⟩


)

= 2
⟨

𝑓 (𝑡, ⋅), ̇̃𝑓 (𝑡, ⋅)
⟩


, 𝑡 ≥ 𝑡0, (51)

which enabled (48).

Remark 5.2. Theorem 5.1 establishes that the DPS (46) behaves in
a way that is analogous to the real parametric case captured by (10),
(12), and (13) or, equivalently, by

d
d𝑡

⎡

⎢

⎢

𝑒𝑁 (𝑡)
𝛼̃(𝑡)

⎤

⎥

⎥

=
⎡

⎢

⎢

𝐴ref −𝐵𝑥(𝑡) 𝐵𝛷T
𝑁 (𝑥𝑁 (𝑡))

𝛤𝛼𝑥𝑁 (𝑡)𝐵T𝑃 0 0
T

⎤

⎥

⎥

⎡

⎢

⎢

𝑒𝑁 (𝑡)
𝛼̃(𝑡)

⎤

⎥

⎥

,

⎣ 𝛩̃(𝑡) ⎦ ⎣−𝛾𝛷𝑁 (𝑥𝑁 (𝑡))𝐵 𝑃 0 0 ⎦ ⎣ 𝛩̃(𝑡) ⎦ 𝑡

12 
⎡

⎢

⎢

⎣

𝑒𝑁 (𝑡0)
𝛼̃(𝑡0)
𝛩̃(𝑡0)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥0 − 𝑥𝑟,0
𝛼̃0
𝛩̃0

⎤

⎥

⎥

⎦

, 𝑡 ≥ 𝑡0, (52)

ssuming zero external disturbance; for additional details, see
ection 3.2.

emark 5.3. A key passage in the proof of Theorem 5.1 is that the dual
perator 𝐸∗

𝑥 can be understood as the operator given by multiplication
y the kernel section K𝑥 ∈ , that is, 𝐸∗

𝑥𝛼 ≜ K𝑥𝛼 for all 𝛼 ∈ R. This
dentity is crucial for approximations and implementations.

Theorem 5.1 relied on the key assumption whereby (46) is forward
omplete. In the next section, we provide sufficient conditions for this
ssumption to be verified.

.2. Well-posedness of the limiting DPS

The Lyapunov analysis presented in Section 5.1 does not address the
uestion of whether the limiting closed-loop control DPS (46) is well-
osed, that is, solutions of (46) exist for all 𝑡 ∈ [𝑡0,∞). Theorem 5.1
ssumes that

↦ 𝑧(𝑡) ≜
(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

∈ R𝑛 × R𝑛 × ≜ Z (53)

xists for all 𝑡 ∈ [𝑡0,∞). In classical MRAC for parametric systems, the
ell-posedness of solutions of the trajectory tracking error dynamics
nd of the adaptive laws follows from the Lipschitz continuity of the
DEs, which assures the existence of unique solutions, and the proof of
efinition of Lyapunov stability of ODEs, which implies the existence of
hese solutions for all times; for details, see Lavretsky and Wise (2012,
h. 9). However, (46) is not an ODE, and the mechanisms that assure
he well-posedness of ODEs do not apply.

In this section, we describe conditions that are sufficient to ensure
he existence and uniqueness of solutions to the DPS (46) that describes
he error dynamics. To address this point, we rewrite (46) as

d
d𝑡

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑧̇(𝑡)

=
⎡

⎢

⎢

⎣

𝐴ref 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑧(𝑡)

+

⎡

⎢

⎢

⎢

⎣

0 −𝐵
(

𝑒(𝑡) + 𝑥𝑟(𝑡)
)T 𝐵𝐸(𝑒(𝑡)+𝑥𝑟(𝑡))

𝛤𝛼𝑥(𝑡)𝐵T𝑃 0 0
−𝛾𝑓𝐸∗

(𝑒(𝑡)+𝑥𝑟(𝑡))
𝐵T𝑃 0 0

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑡,𝑧(𝑡))

(54)

ith the same boundary conditions as in (46). With these definitions,
he feedback control problem is an example of a nonlinear initial value
roblem, one that is described by a DPS in the state 𝑧(⋅) given by (53),
nd (54) takes the compact form

̇ (𝑡) = 𝑧(𝑡) +  (𝑡, 𝑧(𝑡)) , 𝑧
(

𝑡0
)

= 𝑧0, 𝑡 ≥ 𝑡0. (55)

he following theorem states sufficient conditions that ensure the
xistence, uniqueness, and continuous dependence of solutions of (55).

Box 13: Forward completeness of the trajectory tracking error
and adaptive gain dynamics follows as a consequence of bound-
edness on the diagonal of the admissible kernels underlying
the RKHS and the embedding of this kernel into the space of
Lipschitz continuous functions.

Theorem 5.2 (Well-Posedness, Forward Completeness of the DPS). Con-
sider the limiting error DPS given by (55) and the reference model given
by (2). Suppose that the kernel K(⋅, ⋅) that defines the native space  is
bounded on the diagonal, and that  is continuously embedded in the space
of Lipschitz continuous functions 𝐶0,1 (X), that is,  ↪ 𝐶0,1 (X). Then, for
ny 𝑧0 ∈ Z, (55) is forward complete with 𝑧 ∈ 𝐶1([𝑡0,∞),Z), that is,

↦ 𝑧(𝑡) is defined on [𝑡0,∞).
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Proof. The proof of the existence and uniqueness of a local solution
ollows by using Theorem 1.4 of Chapter 6 of Pazy (2012) for nonlinear
ystems having a nonlinear part that satisfies a local Lipschitz condi-
ion. This theorem requires (a) that the map 𝑡 ↦  (𝑡, 𝑧) is continuous
n time for each fixed 𝑧 ∈ Z, and (b) that the map 𝑧 →  (𝑡, 𝑧) is
ocally Lipschitz continuous, uniformly over bounded intervals of time.
o verify these two conditions, consider

(𝑡, 𝑧) =
⎡

⎢

⎢

⎣

−𝐵𝛼̃T
(

𝑒 + 𝑥𝑟(𝑡)
)

− 𝛽𝑟(𝑡) + 𝐵𝐸𝑒+𝑥𝑟(𝑡)𝑓 (𝑡, ⋅)
𝛤𝛼

(

𝑒 + 𝑥𝑟(𝑡)
)

𝑒T𝑃𝐵
−𝛾𝑓K(𝑒+𝑥𝑟(𝑡))𝑒

T𝑃𝐵

⎤

⎥

⎥

⎦

.

y assumption, we know the reference command input 𝑡 ↦ 𝑟(𝑡) is
ontinuous and uniformly bounded for all 𝑡 ∈ [𝑡0,∞), and, since 𝐴ref
s Hurwitz, 𝑡 ↦ 𝑥𝑟(𝑡) is continuous and uniformly bounded. Next, since
he kernel K(⋅, ⋅) is chosen such that  ↪ 𝐶0,1 (X) ↪ 𝐶 (X), the function
̃ ∈  is also continuous. Thus, the first two entries of  (𝑡, 𝑧) are
ontinuous in 𝑡 for fixed 𝑧 ∈ Z.

To verify the continuity in time of the third component of  (𝑡, 𝑧),
et 𝑡𝓁 ∈ (𝑡0,∞) be such that 𝑡𝓁 → 𝑡 as 𝓁 → ∞, and note that

𝛾𝑓K(𝑒+𝑥𝑟(𝑡))𝑒
T𝑃𝐵 − 𝛾𝑓K(𝑒+𝑥𝑟(𝑡𝓁))𝑒

T𝑃𝐵 ∥
≤ |𝛾𝑓 𝑒

T𝑃𝐵|‖K(𝑒+𝑥𝑟(𝑡)) − K(𝑒+𝑥𝑟(𝑡𝓁))‖
≤ |𝛾𝑓 𝑒

T𝑃𝐵|
[

K
(

𝑒 + 𝑥𝑟(𝑡), 𝑒 + 𝑥𝑟(𝑡)
)

+ K
(

𝑒 + 𝑥𝑟
(

𝑡𝓁
)

, 𝑒 + 𝑥𝑟
(

𝑡𝓁
))

−2K
(

𝑒 + 𝑥𝑟(𝑡), 𝑒 + 𝑥𝑟
(

𝑡𝓁
))]

1
2 for all 𝑡 ≥ 𝑡0. (56)

Thus, the continuity of both 𝑥𝑟(⋅) and the kernel K(⋅, ⋅) implies the
ontinuity in time of the third entry of  (𝑡, 𝑧) in time 𝑡.

Next, we prove that  ∶ [𝑡0,∞) × Z → Z is locally Lipschitz
continuous in Z, uniformly in time over bounded intervals. That is,
for every 𝑡 ≥ 𝑡0 and for some 𝑅 > 0, there exists a Lipschitz constant
𝐿𝑡,𝑅 > 0 such that

‖ (𝜏, 𝑦) −  (𝜏, 𝑧) ‖ ≤ 𝐿𝑡,𝑅‖𝑦 − 𝑧‖, (57)

for all 𝑦, 𝑧 ∈ 𝑅 (0) ≜
{

𝑧 ∈ Z | ‖𝑧‖Z < 𝑅
}

and 𝜏 ∈
[

𝑡0, 𝑡
]

. To this goal,
we proceed component-wise and leverage the triangle inequality to
verify (57). Specifically, let 𝑦 ≜ {𝑒, 𝑎̃, 𝑔̃} ∈ 𝑅(0) ⊂ Z and let

 (𝜏, 𝑧) = {1 (𝜏, 𝑧) ,2 (𝜏, 𝑧) ,3 (𝜏, 𝑧)}T.

For all 𝑦, 𝑧 ∈ 𝑅(0), it holds that

∥ 2 (𝜏, 𝑧) − 2 (𝑡, 𝑦) ∥

= ‖

‖

‖

𝛤𝛼
(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵 − 𝛤𝛼
(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵‖‖
‖

≤ ‖𝛤𝛼‖
[

‖

(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵 −
(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵‖

+ ‖

(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵 −
(

𝑒 + 𝑥𝑟 (𝜏)
)

𝑒T𝑃𝐵‖
]

≤ ‖𝛤𝛼‖‖𝐵
T𝑃‖

[

‖

‖

𝑒 + 𝑥𝑟 (𝜏)‖‖ ‖𝑒 − 𝑒‖ + ‖𝑒‖ ‖𝑒 − 𝑒‖
]

≤ ‖𝛤𝛼‖‖𝑃𝐵‖
[

2𝑅 + 𝑥̄𝑟
]

‖𝑒 − 𝑒‖,

where 𝑥̄𝑟 ≜ max𝑡∈[𝑡0 ,∞) ‖𝑥𝑟(𝑡)‖, which proves the local Lipschitz continu-
ity of 2(𝑡, ⋅).

The analysis of 3(𝑡, ⋅) proceeds similarly. Let 𝑦, 𝑧 ∈ 𝑅(0) and note
that

∥ 3 (𝑡, 𝑧) − 3 (𝑡, 𝑦) ∥
= 𝛾𝑓‖K

(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴 − K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴‖ ,

≤ 𝛾𝑓
[

‖

‖

‖

K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴 − K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴‖‖
‖

‖

‖

‖

K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴 − K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

𝑒T𝑃𝐴‖‖
‖

]

,

≤ 𝛾𝑓‖𝑃𝐵‖
[

‖K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤K̄

‖𝑒 − 𝑒‖

+ ‖𝑒‖
⏟⏟⏟

≤𝑅

‖

‖

‖

K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

− K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

‖

‖

‖

]
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for each 𝑡 ∈ [𝑡0,∞). Now, note that

∥ K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

− K
(

𝑒 + 𝑥𝑟 (𝜏) , ⋅
)

∥2
= K

(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

+ K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

− 2K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

≤ |K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

− K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

|

+ |K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

− K
(

𝑒 + 𝑥𝑟 (𝜏) , 𝑒 + 𝑥𝑟 (𝜏)
)

|

≤ ‖K𝑒+𝑥𝑟(𝜏)‖𝐶0,1(X)‖𝑒 − 𝑒‖ + ‖K𝑒+𝑥𝑟(𝜏)‖𝐶0,1(X)‖𝑒 − 𝑒‖

≤ 2𝐶̃K̄‖𝑒 − 𝑒‖

for each 𝑡 ∈ [𝑡0,∞), where the constant 𝐶̃ > 0 characterizes the space of
Lipschitz continuous functions given by the embedding  ↪ 𝐶0,1 (X).

The Lipschitz continuity of 1 (𝑡, ⋅) follows as in the analysis of the
Lipschitz continuity of 2 (𝑡, ⋅) and 3 (𝑡, ⋅), and most of its details are
omitted for brevity. This analysis would ultimately show that

|1 (𝜏, 𝑦) − 1 (𝜏, 𝑧) | ≤ ‖𝐵‖
((

𝑅 + 𝑥̄𝑟
)

‖𝛼̃ − 𝑎̃‖ + 𝑅
(

1 + 𝐶̃
)

‖𝑒 − 𝑒‖ + ‖𝑓 − 𝑔̃‖
)

for each 𝑡 ∈ [𝑡0,∞) and for all 𝑦, 𝑧 ∈ 𝑅(0) ⊂ Z.
Having proven continuity of (⋅, ⋅) in its first argument and local Lips-

hitz continuity in its second argument, Theorem 1.4 in Chapter 6 of Pazy
2012) now guarantees that there is a unique mild solution over [𝑡0,∞) or
compact subset thereof containing 𝑡0.

By proceeding as in the proof of Theorem 5.1, we can prove that
̃ ∈ 𝐶1([𝑡0, 𝑇max),) and solutions of (55) are bounded on [𝑡0, 𝑇max). Thus,
e conclude that 𝑇max = ∞, and the mild solution 𝑧 ∈ 𝐶([𝑡0,∞),Z). Finally,
e can use Theorem 5 in Chapter 3 of Pazy (2012) to establish forward

ompleteness in 𝐶1([𝑡0,∞),Z). Since  is a bounded linear operator, it
enerates a 𝐶0 semigroup.

Theorem 5.2 concludes this first paper of a two-part work. Together
ith Theorem 5.1, this result characterizes key properties of the lim-

ting DPS (55) that is the foundation of the proposed nonparametric
PS framework. These properties are the existence and uniqueness of

olutions to the trajectory tracking error dynamics and adaptive gain
ynamics at all times, boundedness of these solutions, and asymptotic
onvergence of the trajectory error dynamics to zero. Whereas the
roposed solution appears enticing, it does not apply to problems of
ractical interest since the adaptive law (43), and, hence, the coupled
ystem given by the plant dynamics (1) with control input (41), the
daptive law (42), and (43) form a DPS. The next paper will address
he key problem of approximating such a DPS. A particular aspect of
his problem lies in the fact that, in principle, applying approximations
f the limiting DPS, and hence, approximating the space of functional
ncertainties , asymptotic convergence of the tracking error to zero
ay not be recovered. It is worthwhile remarking on how, if we set
𝑟(𝑡0) = 0 and 𝑟(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡0, then the proposed results allow
ddressing the problem of stabilizing the solution of the nonlinear plant
odel (1) to zero.

. Conclusion

This first paper of a two-part work introduced a novel control
ramework called nonparametric adaptive control. According to this
ramework, nonlinear uncertainties are not parameterized by a regres-
or vector, which is provided a priori or constructed in real-time, as it
ccurs in existing parametric adaptive control frameworks. Assuming
hat nonlinear uncertainties are elements of native spaces, the proposed
ramework allows controlling the plant dynamics without any explicit
haracterization of the unknown terms.

The proposed framework stems from a DPS that, by its nature,
s not implementable in finite dimensions. The second part of this
ork provides several alternative solutions, all inspired by classical

obust adaptive control techniques, to approximate the DPS underlying
he proposed framework. The use of RKHSs and, in particular, their
umerous tools to estimate approximation errors, will be essential to
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capture the performance of these approximations of the proposed DPS,
whose behavior can be considered as a limiting case of a series of
finite-dimensional approximations parameterized by the size 𝑁 of the
pproximating space.

Worthy of mention is that the proposed approach, which extended
lassical, parametric, MRAC theory to a nonparametric setting, can be
xtended to other control techniques, such as robust control Lyapunov
unctions and backstepping control. These results, which are beyond
he scope of this work, can be found in Wang, Scurlock, Kurdila, and
’Afflitto (2024) and Kurdila et al. (2025, Ch. 5).
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