
Chapter 3
Autonomous Multi-rotor Unmanned
Aerial Vehicles for Tactical Coverage

Julius A. Marshall, Paul Binder, and Andrea L’Afflitto

3.1 Introduction

In recent years, the use of small multi-rotor unmanned aerial vehicles (UAVs), such as
quadcopters, has become particularly appealing to first responders, law enforcement
agencies, and other emergency teams to collect information with high spatial and
temporal resolutions about unknown and potentially dangerous environments. The
complexity of employing UAVs in these tasks is substantially determined by the
need for these vehicles to operate in complex environments where external sources
of information, such as the Global Positioning System (GPS) or alternative global
navigation satellite systems, either underperform or are unavailable.

This chapter presents an original guidance system for autonomous multi-rotor
UAVs, such as quadcopters, equipped with forward-facing cameras to create maps
of unknown, potentially hostile, GPS-denied environments, while flying at very low
altitudes. Several unique features distinguish the proposed system. Firstly, to operate
in dangerous environments, this guidance system allows the aircraft to implement
several tactics to minimize its exposure to potential threats. In this chapter, these tac-
tics include coasting obstacles so that potential threats may only detect and intercept
the UAV from limited directions. Furthermore, the UAV coasts obstacles to reduce
the ability of systems based on sound reflection to localize the UAV. If no obsta-
cle can be used to shelter the UAV, then the vehicle accelerates toward its next goal
point to minimize the time spent in unsheltered areas. The proposed guidance system
also allows the implementation of alternative tactics, such as maximizing flight time
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in already explored areas. An additional unique feature of the proposed guidance
system is that it can operate with any vision-based navigation system, such as the
one presented in [1, 2], tasked with localizing the UAV relative to the environment
and reconstructing the environment in the form of voxel maps. In the voxel maps
employed in this work, the size of all voxels is user-defined and each voxel captures
whether the corresponding portion of the environment is still unexplored or, with
some user-defined confidence level, explored and either occupied by some obstacle
or unoccupied. Finally, the proposed guidance system implements an explore-then-
exploit approach [3], since its path planner a suitable strategy to cover a user-defined
set, and its trajectory planner enables the mapping process by exploiting the vehi-
cle’s dynamics. However, a key difference between the proposed guidance system
for mapping and the majority of existing ones based on the explore-then-exploit
technique [4] is that, in this work, the map is created by employing forward-facing,
and not down-facing, cameras.

The proposed path planner includes both an original algorithm to select multiple
goal points for the UAV to visit in order to cover the environment and an optimization-
based algorithm to produce sequences of waypoints connecting consecutive goal
points. The goal point selection algorithm partitions the set to be covered in par-
allelepipeds of user-defined size and containing user-defined numbers of occupied
voxels, and then sets the next goal point as the barycenter of the nearest partition,
the barycenter of the largest partition, or a convex combination thereof. Thus, the
proposed goal point selection algorithm allows the user to choose a more systematic
approach or greedier approach, according to needs. For instance, a greedier approach
may imply a longer flight time, which, in the presence of potential threats to the UAV,
may result in an unsafe approach. The lifelong planning A∗ (L P A∗) algorithm under-
lying the proposed path planner generates a sequence of waypoints for the UAV to
connect consecutive goal points; the L P A∗ algorithm has been chosen for its ability
to rapidly generate paths [5]. Furthermore, in the proposed framework, this search
algorithm can be seamlessly replaced by alternative algorithms operating over graphs
such as D∗ or D∗ lite [6, 7]. In order to induce tactical behaviors, the cost-to-come
function characterizing the proposed path planner includes a weighing function that
steers the UAV toward obstacles to seek shelter. This weighing function is tunable
by means of user-defined parameters that define both the maximum distance and the
strength of the attraction exerted by obstacles on the UAV. Remarkably, alternative
or additional criteria to generate more cautious trajectories, such as maximizing the
distance traveled in already covered areas, can be implemented in the proposed path
planning system by modifying the weighing function.

A fast model predictive control framework allows the proposed guidance system to
generate real-time reference trajectories that are compatible with the UAV’s dynam-
ics and interpolate the waypoints produced by the path planner with user-defined
precision. The cost function underlying the proposed trajectory planner captures the
effort needed to control the UAV, the cost to reach the next waypoint, and the tactical
advantage for the UAV to coast obstacles to seek shelter; user-defined parameters
allow to tune the attractive effect of the obstacles’ set on the UAV. The proposed
guidance system accounts for the UAV’s nonlinear dynamics, collision avoidance
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constraints, attitude constraints, and saturation constraints on each propeller’s thrust
force. In particular, the UAV’s dynamics are captured by the UAV’s discrete-time
output-feedback linearized equations of motion; output-feedback linearization allows
to exploit the UAV’s dynamics while leveraging a quadratic programming framework
to solve the model predictive control problem in real time [2]. Collision avoidance
constraints generated by an original algorithm in the form of convex sets that include
the UAV, exclude all detected obstacle points, and are sufficiently large to produce
reference trajectories over long time horizons. Constraints on the UAV’s yaw angle
are imposed by means of inequalities, and constraints on the UAV’s pitch and roll
angles are imposed by means of barrier functions embedded in the cost function.
Finally, the boundary conditions underlying the proposed trajectory planner allow
the user to define how closely waypoints need to be followed and the UAV’s accel-
eration, while traversing less safe areas.

The literature on the coverage problem for UAVs employed in agriculture, mining,
and civil engineering, has grown rapidly in the past few years [4, 8–10]. However,
the problem of covering unknown and potentially hostile environments by using
UAVs is still under-explored. Among the few works in this area, it is worthwhile to
recall [11], where a modified logistic map and a modulo tactic are used to generate
unpredictable motion profiles [12], where a nonlinear programming-based approach
is employed to design paths for teams of UAVs for continuous coverage and sustained
situational awareness, and [13], where a path planner based on genetic algorithms
was proposed for heterogeneous fleets of UAVs flying at low altitudes in dynamic
and potentially dangerous environments. However, it is worthwhile to recall that both
[12, 13] rely on a priori information about the threats to the UAV and, hence, are not
recommended for completely unknown environments. Furthermore, [11–13] propose
path planners only. However, not accounting for the UAV’s dynamics reduces the
ability to implement these systems on UAVs operating in cluttered environments,
and, to succeed in these missions, fast trajectory planners and collision avoidance
algorithms need to be included. For its ability to operate in environments, where the
nature and the location of threats are unknown, and the integration of a fast path
planner and a fast trajectory planner, the proposed guidance system advances the
state of the art in the design of UAVs involved in mapping of unknown, contested
areas.

This chapter is structured as follows. In Sect. 3.2, the notation is outlined. Suc-
cessively, in Sect. 3.3, we present the path planner underlying the proposed guidance
system for tactical coverage. In Sect. 3.4, we present the trajectory planning algo-
rithm underlying the proposed guidance system. Section 3.5 presents the results of
two sets of numerical simulations aimed at showing the applicability of the proposed
approach and its ability to efficiently cover large areas both in a tactical and in a
reckless manner. Finally, in Sect. 3.6, we draw conclusions and recommend future
work directions.



34 J. A. Marshall et al.

3.2 Definitions and Notation

Let N denote the set of positive integers, R the set of real numbers, Rn the set of n × 1
real column vectors, R

n×m the set of n × m real matrices, R
n+ the positive orthant of

R
n , and R

n
+ the nonnegative orthant of R

n . The interior of the set S ⊂ R
n is denoted

by S̊, the boundary of S ⊂ R
n is denoted by ∂E, and the closure of S is denoted byS.

Given x, y ∈ R
n , if each component of x is larger, not smaller, not larger, or smaller

than the corresponding component of y, then we write x >> y, x ≥≥ y, x ≤≤ y, or
x << y, respectively. The open ball of radius ρ > 0 centered at x ∈ R

n is denoted by
Bρ(x). Given the symmetric, negative-definite matrix P ∈ R

3×3, r ∈ R
3, and c < 0,

E(P, r, c) � {w ∈ R
3 : (w − r)T P(w − r) − c ≥ 0} captures a closed ellipsoid.

The transpose of B ∈ R
n×m is denoted by BT. The i th element of the canon-

ical basis of R
n is denoted by ei,n � [0, . . . , 1, . . . , 0]T, the zero vector in R

n

is denoted by 0n , the zero n × m matrix in R
n×m is denoted by 0n×m , and the

identity matrix in R
n×n is denoted by 1n . The diagonal matrix formed by ai ∈ R,

i = 1, . . . , p, is denoted by A = diag(a1, . . . , ap), and the block-diagonal matrix
formed by Mi ∈ R

ni ×ni is denoted by M = blockdiag
(
M1, . . . , Mp

)
. The distance

between the point x ∈ R
n and the set S is denoted by d2(x,S) [14, p. 16]. We write

‖ · ‖ for the Euclidean vector norm and the corresponding equi-induced matrix norm
[15, Definition 9.4.1].

The saturation function sat : R → [−1, 1] is defined so that if x ∈ [−1, 1], then
sat(x) = x , if x > 1, then sat(x) = 1, and if x < −1, then sat(x) = −1. The first-
and second-time derivatives of the smooth function y : [0,∞) → R

n are denoted
by ẏ(t), t ≥ 0, and ÿ(t), and the kth-order derivative of y(·), k ≥ 3, is denoted by
y(k)(·).

User-defined parameters are denoted by μa ∈ R, a ∈ {1, . . . , 24}. All vectors are
expressed with respect to the orthonormal inertial reference frame I � {O; X, Y, Z}
centered at O and with axes X, Y, Z ∈ R

3 defined so that the gravitational force acts
along the −Z axis.

3.3 Path Planning System for Tactical Coverage

3.3.1 Overview

The proposed guidance system computes both a reference path and a reference tra-
jectory for a UAV quadcopter so that its camera-based navigation system maps a
user-defined connected set, that is, classifies the voxels covering this set as occu-
pied or unoccupied, and reconstructs a map of the obstacles in this set. To meet this
goal, the UAV’s reference path is computed iteratively by identifying a sequence of
goal points, and then by finding a sequence of waypoints joining consecutive goal
points. In particular, at the beginning of the mission, all voxels covering the set to be
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mapped are considered as unexplored, and as the set is being mapped, unexplored
voxels are grouped into partitions, that is, parallelepipeds whose minimum edge is
user-defined. At each iteration, the UAV’s goal point is chosen as the barycenter of
the partition containing the largest number of unexplored voxels, or as the barycenter
of the nearest partition containing a user-defined minimum number of unexplored
voxels, or as a convex combination of these two points. Setting the barycenter of
the partition containing the largest number of unexplored voxels as the goal point
for a given iteration not only allows to classify a large number of voxels but also
enforces a reckless strategy since the UAV may be drawn toward unsafe environ-
ments. Conversely, setting the barycenter of the nearest partition not only allows the
classification of a small number of voxels but also enables a more cautious tactic by
preventing the UAV from quickly reaching far, unexplored areas. Having set the goal
point, the reference path is computed as the solution of an optimization problem that
captures the UAV’s need to reach the goal point while enabling additional tactical
strategies to exhibit a tactical behavior; examples of such strategies include coasting
the obstacles’ set or flying faster when sufficiently far from the obstacles’ set. The
proposed path planner does not account for the UAV’s dynamics, but models the
vehicle as a point mass able to move across adjacent unoccupied voxels. The UAV’s
dynamics and, hence, the dynamics of the onboard cameras’ focal axis, is accounted
for by the trajectory planner presented in Sect. 3.4 below.

Although the proposed path planner is designed to lead the UAV through the
voxels containing the goal points, the proposed coverage strategy does not require
meeting this objective. The voxel containing a goal point merely needs to be detected
by the onboard navigation system and classified either as occupied or as unoccupied.
Attempting to classify all voxels in the user-defined connected set in a systematic
manner, as it occurs for numerous coverage algorithms [4, 16–18], may induce a
reckless behavior in the UAV.

3.3.2 Notation

A voxel is a rectangular parallelepiped of user-defined dimensions, and let the con-
nected setV ⊂ R

3 denote the union of nV ∈ N congruent voxels that cover the set to
be mapped. Each voxel inV is denoted by its center, whose position is captured by
r̂ p ∈ V, p ∈ {1, . . . , nV}. The explored indicator function χexplored : R

3 → {0, 1} is
defined so that, if the voxel centered in r̂ p ∈ V is unexplored, then χexplored(r̂ p) = 0,
and if the voxel centered in r̂ p ∈ V is explored, then χexplored(r̂ p) = 1. Furthermore,
let Vunexplored � {r̂ p ∈ V : χexplored(r̂ p) = 0, p = 1, . . . , nV} and Vexplored � V \
Vunexplored capture the unexplored subset ofV and the explored subset ofV, respec-
tively. The occupied indicator function χoccupied : R

3 → {0, 1} is defined so that, if
the voxel centered in r̂ p ∈ V, p ∈ {1, . . . , nV}, is unoccupied, then χoccupied(r̂ p) = 0,
and if the voxel centered in r̂ p ∈ V is occupied, then χoccupied(r̂ p) = 1. Furthermore,
let Vfree � {r̂ p ∈ V : χoccupied(r̂ p) = 0, p = 1, . . . , nV} and Voccupied � V \Vfree
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capture the unoccupied subset of V and the occupied subset of V, respectively.
The obstacles’ set O � Voccupied ∩Vexplored is defined as those voxels that are both
occupied and explored; the cardinality of O is denoted by nO.

Remark 3.1 The notions of occupied and explored voxels are unrelated. Indeed, at
a given time instant, an occupied voxel may have not been explored by the UAV’s
navigation system. In this chapter, all unexplored voxels are designated as unoccupied
until they are explored by the UAV’s navigation system. This choice is motivated by
the need for the path planning algorithm to return complete paths between any two
unoccupied voxels, regardless of whether these voxels have already been explored
or not.

The set V is partitioned in nP rectangular parallelepipeds P̂a , a ∈ {1, . . . , nP},
such that P̂a is the union of voxels,

⋃nP
a=1 P̂a = V, and P̂a ∩ P̂b = {∅} for all a, b ∈

{1, . . . , nP} such that a �= b. The barycenter of P̂a , a ∈ {1, . . . , nP} is denoted by
r̂P̂a

∈ P̂a . Lastly, the smallest parallelepiped containingV is denoted by P̂0.

The subset of the voxel map contained in parallelipiped P̂i , i = 0, . . . , nP, is
denoted by Vi ⊆ P̂i . The set of explored voxels in P̂i , i = 0, . . . , nP, is defined
as Vexplored,P̂i

� Vexplored ∩Vi, the set of unexplored voxels in P̂i is defined as

Vunexplored,P̂i
� Vunexplored ∩Vi , the set of unoccupied voxels in P̂i is defined as

Vfree,P̂i
� Vfree ∩Vi , and the set of occupied voxels in P̂i is defined asVoccupied,P̂i

�
O ∩Vi ; for details, see Fig. 3.1. The number of explored voxels in P̂i , i = 0 . . . , nP,
is denoted by nexplored,P̂i

, the number of occupied voxels in P̂i is denoted by

noccupied,P̂i
, the number of unexplored voxels in P̂i is denoted by nunexplored,P̂i

, and
the length of the smallest edge of Pi �P̂i ,min.

3.3.3 Goal Points Selection Algorithm

As discussed in Sect. 3.3.1, the UAV’s reference path is computed iteratively by
identifying a sequence of goal points determined by executing Algorithm 3.1. The
first step of this algorithm is to partition P̂0 ⊆ V in nP rectangular parallelepipeds by
employing Algorithm 3.2, which is discussed in detail in the following. Next, at each

iteration of Algorithm 3.1, we find the partitions
{P̃1, . . . , P̃ñP

} ⊆
{
P̂1, . . . , P̂nP

}
such that

nunexplored,P̃i
nP̃i

≥ 1 − μ1, i = 1, . . . , ñP, where μ1 ∈ (0, 1) captures the user-

defined threshold on the ratio of explored voxels over the total number of voxels
in P̂i ; thus,

{P̃1, . . . , P̃ñP
}

are sufficiently unexplored partitions of P̂0. Finally, the
UAV’s goal point r̂P̃,q , q = 0, . . . , ng, is defined as the barycenter of the partition
P̃ ∈ {P̃1, . . . , P̃ñP

}
that is accessible to the UAV and contains the point

μ2r̂Pprox + (1 − μ2)r̂Pmax , (3.1)
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P̂8

Vunexplored,P̂1

Vunexplored,P̂3

P̂3

Obstacle Voccupied
⋂ Vunexplored

O = Voccupied ∩ Vexplored

P̂1

Vexplored,P̂1

P̂2

P̂0

Occupied unexplored voxel

Unoccupied explored voxel

Occupied explored voxel

Fig. 3.1 A voxel map and its partitions P̂i , i = 1, . . . 8. Occupied unexplored voxels Voccupied ∩
Vunexplored are marked in gray, and occupied explored voxels O are marked in gray with a pink
boundary. Free unexplored voxels fill the remaining space. The setsVunexplored,P̂1

andVunexplored,P̂3

are shown to illustrate the unexplored subsets of the parallelepipeds P̂1 and P̂3. The setsVexplored,P̂1

andVunexplored,P̂8
illustrate explored and unexplored subsets of P̂1 and P̂8, respectively

where μ2 ∈ [0, 1] is user-defined, r̂Pprox ∈ Pprox denotes the barycenter of Pprox,
Pprox ∈ {P̃1, . . . , P̃ñP

}
denotes the partition that is closest to the UAV along its

direction of motion, r̂Pmax ∈ Pmax denotes the barycenter of Pmax, and Pmax ∈{P̃1, . . . , P̃ñP
}

denotes the partition containing the largest number of voxels. In this
chapter, the condition whereby the barycenter of P̃ is accessible to the UAV is veri-
fied by applying a greedy A∗ algorithm [19, pp. 604–608]. Partitions and goal points
are recomputed as soon as the UAV’s navigation system maps the voxel containing
r̂P̃. If there does not exist a partition whose ratio of explored voxels is smaller than
μ1, then the user-defined setV is considered as mapped.

At each iteration of Algorithm 3.1, P̂0 ⊆ V is partitioned in nP rectangular par-
allelepipeds according to Algorithm 3.2. In Algorithm 3.2, if two sets of conditions
are verified, then P̂0 or any of its partitions are divided into smaller parallelepipeds,
whose aspect ratio is the same as the aspect ratio of P̂0. The first set of these conditions
requires that both the ratio of explored voxels over the total number of voxels in P̂i ,
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Algorithm 3.1 Generate goal points r̂P̃,q , q = 0, . . . , ng, for the UAV

1: Set q = 0

2: while ∃P̃i s.t.
nexplored,P̃i

nP̃i
< μ1 do

3: Partition P̂0 in
{
P̂1, . . . , P̂nP

}
by executing Algorithm 3.2

4: Find
{P̃1, . . . , P̃ñP

} ⊆
{
P̂1, . . . , P̂nP

}
s.t.

nunexplored,P̃i
nP̃i

≥ 1 − μ1, i ∈ {1, . . . , nP}
5: Compute r̂Pprox , r̂Pmax

6: Determine the goal point as the barycenter of the parallelepiped containing (3.1)
7: while Navigation system has not mapped r̂P̃,q do
8: wait
9: end while

10: Increment q = q + 1
11: end while

Algorithm 3.2 Octree iterative algorithm to partition P̂0

1: Initialize P̂0 = minimum bounding box, nP = 1
2: Find nP̂0

, nexplored,OP0
, noccupied,OP0

, �OP0,min

3: if
nexplored,OP0

nP̂0
< μ1 then

4: Divide(P̂0)

5: end if
Divide P̂i

6: Compute vertices of child parallelipipeds {P̂nP+1, . . . , P̂nP+8}
7: Compute nP̂ j

, nexplored,P̂ j
, noccupied,P̂ j

, �P̂ j ,min, j ∈ {nP + 1, . . . , nP + 8}
8: nP = nP + 8
9: for j = (nP − 7):nP do

10: if
nexplored,P̂ j

nP̂ j

< μ1 and
�P̂ j ,min

2 ≥ μ3 then

11: if nexplored,P̂ j
≥ μ4 or

noccupied,P̂ j
nP̂ j

≥ μ5 then

12: Divide(P̂ j )

13: end if
14: end if
15: end for

i = 0 . . . , nP, is smaller than the user-defined parameter μ1 ∈ (0, 1) and the length
of the smallest side of P̂i is larger than 2μ3, where μ3 > 0 is user-defined. The second
set of conditions requires that the number of explored voxels in P̂i , i = 0 . . . , nP, is
larger than the user-defined parameter μ4 ∈ N or the ratio of occupied voxels over
the total number of voxels in P̂i is larger than the user-defined parameter μ5 ∈ (0, 1).

Algorithm 3.2 produces partitions of P̂0 that are larger than some user-defined
threshold and contain sufficiently many explored voxels, sufficiently many occu-
pied voxels, or sufficiently many unexplored voxels. Setting larger values of μ1 and
smaller values of μ3, μ4, and μ5 Algorithm 3.2 produces smaller partitions containing
primarily unexplored voxels that are at the edge of explored areas, larger partitions
containing primarily unexplored voxels that are located away from explored areas,
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and larger partitions containing primarily explored voxels. Thus, it is expected that
larger values of μ1 and smaller values of μ3, μ4, and μ5 imply longer flight times,
since the UAV must collect more information about the environment. Setting larger
values of μ2 ∈ [0, 1], Algorithms 3.1 and 3.2 enable a systematic approach to cover
P̂0, whereas, by setting smaller values of μ2 ∈ [0, 1], Algorithms 3.1 and 3.2 enable a
greedy approach to the coverage problem. Therefore, it is expected that larger values
of μ1 and smaller values of μ2, . . . , μ5 imply longer flight times since the UAV is
tasked to cover smaller partitions of P̂0 more greedily.

3.3.3.1 Study on the Computational Cost of Algorithm 3.2

In this section, we present the results of numerical simulations aimed at analyzing
the performance of Algorithm 3.2 as a function of the user-defined parameters μ1,
μ3, μ4, and μ5. These simulations have been performed on a computer hosting an i7-
11800H 2.3 GHz CPU, 16 GB RAM, and operates Ubuntu 18.04. This single-board
computer is used also for the software-in-the-loop simulations presented in Sect. 3.5
and future flight tests.

To perform these numerical simulations, 10 randomly generated obstacle sets
Voccupied are employed, and, for each obstacle set, 10 sets of explored voxelsVexplored

are considered. Each obstacle set is generated by incrementally placing obstacles
in the shape of cubes of 1 m side, starting from an empty map, whose volume is
2400 m3, until 30% of the map is occupied. Given an obstacle set, each set of explored
voxels is generated as the set of voxels contained in a sphere of 4 m radius and
centered at one of 10 pre-determined locations, which are equally spaced in P̂0.
This approach allows to simulate maps that, similar to maps produced by UAVs
at the beginning of a coverage mission, contain explored voxels that are clustered
and occupy approximately 10% of P̂0. A uniformly distributed random number
generator is used to select the locations of the obstacles. A volume of 2400 m3

was chosen because it is sufficiently representative of common industrial or office
spaces, where the proposed guidance system for scouting unknown environments
could be employed. Placing a cap on the density of obstacles is necessary since at
higher densities, path planners similar to the one proposed in this chapter become
unsuccessful on voxel maps, whose obstacles are scattered [2].

Since the first condition of Algorithm 3.2 to further divide a partition of P̂0 con-
cerns the pair (μ1, μ3) and its second condition concerns the pair (μ4, μ5), the
proposed numerical study is performed by varying (μ1, μ3) and (μ4, μ5) separately.
The user-defined parameter μ1 is varied over the interval [0.30, 0.90], since, in the
proposed simulation setup, if μ1 < 0.30, then the result of Algorithm 3.2, in general,
is not refined enough to be useful. Furthermore, if μ1 < 0.10, then Algorithm 3.2
does not produce any partition. If μ1 is less than or equal to 0.10 (since the initial
sphere leave 10% of the map explored), and if μ1 > 0.90, then Algorithm 3.2 pro-
duces partitions containing a small number of voxels. The parameter μ3 is spanned
over the interval [0.20, 2.40], since the length of the smallest side of a voxel is 0.20 m
and, considering the scopes of this chapter, at least two voxels should be contained
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in a partition. Additionally, 2.40/2 m is sufficiently representative of the width of
some space to be explored by the UAV. The parameter μ4 is spanned over the set
{4, . . . , 160}, since the size of the UAV employed in this research is approximately
equivalent to 4 voxels, and the field of view of the cameras employed in this research
allows to explore a cone, whose diameter is approximately as large as 160 voxels.
Finally, μ5 is spanned over the interval [0.00, 0.30], since it is statistically impossible
for a small UAV, which employs a guidance system similar to the proposed one, to find
a viable path in a space occupied by 30% of randomly generated voxels. To reduce the
computational effort involved with the proposed set of simulations, not all admissible
pairs of (μ1, μ3) are tested, but only the pairs (μ1, μ3) ∈ S1, whereS1 � {(μ1,μ3) =
(0.35 + 0.05i, 0.20 + 0.20i), i = 0, . . . , 11} is an ordered set, since the computa-
tional time of Algorithm 3.2 increases for increasing values of μ1 and decreasing
values of μ3, whereas it is unclear a priori whether the computational cost of Algo-
rithm 3.2 is supposed to increase for increasing values of μ1 and increasing val-
ues of μ3 or not. Similarly, not all admissible pairs of (μ4, μ5) are tested, but only
the pairs (μ4, μ5) ∈ S2 � {(μ4, μ5) = (160 − 12i, 0.01 + 0.022i), i = 0, . . . , 13},
since the computational time of Algorithm 3.2 increases for decreasing values of μ4

and decreasing values of μ5, whereas it is unclear a priori whether the computa-
tional cost of Algorithm 3.2 is supposed to increase for decreasing values of μ4 and
increasing values of μ5 or not.

The boxplots in Fig. 3.2 capture some of the statistical data of the 1000 simulations
performed to test Algorithm 3.2 as functions of (μ1, μ3) ∈ S1, averaged over all
(μ4, μ5) ∈ S2. From these plots, it appears that, varying the pair (μ1, μ3) over S1,
the average computational time varies nonlinearly, captured by the best-fitting curve

p(τ ) = 0.0002τ 7 − 0.0116τ 6 + 0.2317τ 5 − 2.1865τ 4 + 10.0547τ 3

− 22.3011τ 2 + 36.8072τ + 220.3555, τ ∈ [1, 12],

where p(1) approximates the computational time of Algorithm 3.2 for (μ1, μ3) =
(0.35, 0.20) and p(12) approximates the computational time of Algorithm 3.2 for
(μ1, μ3) = (0.90, 2.40), the average interquartile range is 1 ms with maximum
deviance of 1 ms, and the average length of the whiskers is 4 ms with maximum
deviance of 2 ms. The boxplots in Fig. 3.3 capture some of the statistical data
of the performed simulations as functions of (μ4, μ5) ∈ S2, averaged over all
(μ1, μ3) ∈ S1. These plots show that varying the pair (μ4, μ5) over S2, the com-
putational time remains substantially constant and approximately equal to 291 ms
with maximum deviance of 3 ms, the interquartile range is in the order of 30 ms with
maximum deviance of 1 ms, and the average length of the whiskers is 101 ms with
maximum deviance of 3 ms.

From this analysis, we deduce that the computational time of Algorithm 3.2
increases for both increasing values of μ1 and μ3 and increasing values of μ1

and decreasing values of μ3. Therefore, μ1 has a stronger impact than μ3 on the
computational time for Algorithm 3.2. From this analysis, we also deduce that the
computational time of Algorithm 3.2 remains constant for decreasing values of μ4
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Fig. 3.2 Boxplots capturing statistical data on the computational time of Algorithm 3.2 as a function
of (μ1, μ3) ∈ S1, averaged over (μ4, μ5) ∈ S2. As both μ1 and μ3 increase, the computational
time increases of Algorithm 3.2 increases. A seventh-order polynomial over the interval [1, 12] best
interpolates the average computational times

and increasing values of μ5 and increases for decreasing values of μ4 and decreasing
values of μ5. Therefore, to limit the computational cost of executing Algorithm 3.2,
it is recommended to employ smaller values of μ1, larger values of μ3, smaller values
of μ4, and larger values of μ5. However, in this case, P̂0 is divided in larger partitions
and all partitions contain a larger number of both explored and unexplored voxels.
Alternatively, larger values of μ1 and smaller values of μ3, μ4, and μ5 imply higher
computational costs, but produce partitions that contain either mostly explored voxels
or mostly unexplored voxels.

In this work, the proposed guidance system is implemented on an Intel NUC
single-board computer, which is sufficiently fast to execute an implementation
of Algorithm 3.2 coded in C++ with low computational times, while producing
partitions that contain either mostly explored voxels or mostly unexplored voxels.
Thus, we set (μ1, μ3, μ4, μ5) = (0.90, 1.00, 16, 0.28), and tested the performance
of Algorithm 3.2 with in three sets of software-in-the-loop simulations on this single-
board computer. These simulations were performed on the voxel map shown in the
left-most plot of Fig. 3.4. This map captures an open space, high-bay area with few
scattered obstacles on the north side, and low-ceiling offices on the south side. In
the first simulation, we set nexplored,P̂0

= 63319, in the second simulation, we set
nexplored,P̂0

= 97697, and in the third simulation, we set nexplored,P̂0
= 152394. To

collect statistically relevant data, each simulation was performed 10 times.
In the first, second, and third columns on the right of Fig. 3.4, the explored voxels

are indicated by purple dots, the boundaries of the partitions produced by Algo-
rithm 3.2 are denoted by red lines, and the unexplored set of voxels Vunexplored are
unmarked. In average, the first set of simulation results was achieved in 213 ms with
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Fig. 3.3 Boxplots capturing statistical data on the computational time of Algorithm 3.2 as a function
of (μ4, μ5) ∈ S2, averaged over (μ1, μ3) ∈ S2. Each set of results shows similar computational
time, median, and variance

Fig. 3.4 Voxel map employed to evaluate the performance of Algorithm 3.2 and graphical repre-
sentation of three sets of simulations. The occupied voxels are denoted by black dots, the explored
voxels are indicated by purple dots, the boundaries of the partitions produced by Algorithm 3.2
are denoted by red lines, and the unexplored set of voxels Vunexplored are unmarked. By setting
(μ1, μ3, μ4, μ5) = (0.90, 1.00, 16, 0.28), Algorithm 3.2 produces partitions that cluster explored
voxels into large parallelepipeds, partitions that cluster unexplored voxels into large parallelepipeds,
and smaller partitions on the border of the explored set
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a standard deviation of 3 ms, the second set of simulation results was achieved in
372 ms with a standard deviation of 9 ms, and the third set of simulation results
was achieved in 617 ms with a standard deviation of 11 ms; these results show that
Algorithm 3.2 can be executed in real time on a multi-rotor UAV. These simulations
also show that, regardless of the sizeVexplored, Algorithm 3.2 produces partitions that
cluster explored voxels into large parallelepipeds, partitions that cluster unexplored
voxels into large parallelepipeds, and smaller partitions on the border of the explored
set. This is an ideal result, since it enables a greedy behavior by setting μ2 in (3.1)
closer to 0 and, hence, allowing to select goal points for the UAV in areas that are
large and mostly unexplored, while ignoring large and mostly explored areas, or a
systematic behavior by setting μ2 closer to 1.

3.3.4 Numerical Solution of the Path Planning Problem

Given the sequence of goal points {r̂P̃,q}ng

q=0, the proposed path planning algorithm
generates the UAV’s reference path as the sequence {r̂k}nw

k=0 ⊂ R
3 \O such that r̂0 =

r̂P̃,q , q ∈ {0, . . . , ng − 1}, and r̂nw = r̂P̃,q+1. The sequence {r̂k}nw
k=0 minimizes the cost

function

fk,q � gk + hk,q , k ∈ {1, . . . , nw}, q ∈ {0, . . . , ng − 1}, (3.2)

where

gk �
k∑

p=1

[
κ(d2(r̂ p,O))d2(r̂ p, r̂ p−1)

]
(3.3)

denotes the cost-to-come function,

hk,q � μ8d2(r̂k, r̂P̃,q+1) (3.4)

denotes the heuristic function,

κ(α) �
{

μ8 + 0.5(1 − μ8)
[
1 + cos 2π(α−μ1)

μ7−μ6

]
, α ∈ [μ6, μ7],

1 α ∈ [0, μ6) ∪ (μ7,∞),
(3.5)

denotes the weighing function, and μ7 > μ6 > 0 and μ8 ∈ [0, 1) are user-defined
parameters. The cost function (3.2) is the weighted sum of the length of the UAV’s
reference path, namely, (3.3), and an underestimate of the Euclidean distance between
the voxel occupied by the UAV and the goal point r̂P̃,q , q ∈ {1, . . . , ng}, namely, (3.4).

The weighing function κ(·) is continuous, its minimum is equal to μ8 and is
attained at α = (μ6 + μ7)/2, and it encourages tactical behaviors by rewarding paths
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Fig. 3.5 Plot of the weighing function κ(·) as a function of α > 0 with (μ6, μ7, μ8) = (1, 5, 0.1),
(μ6, μ7, μ8) = (2, 6, 0.3), and (μ6, μ7, μ8) = (1, 5, 0.1). This weighing function is used to
encourage the proposed guidance system to search for paths close to the obstacles set, so that
the UAV may exploit obstacles for shelter

that are closer to the obstacles’ setO. Thus, it follows from (3.3) that for larger values
of μ8, the obstacles’ attractive effect is less enhanced, and the UAV exhibits more
reckless behavior. For all α ∈ [μ6, μ7], it holds that κ(α) < 1 and hence, [μ6, μ7]
captures the region of influence of the obstacles set. If the UAV occupies a voxel that
is either closer than μ6 to O or further from O than μ7, then the weighing function
is equal to unity, and the cost-to-come function reduces to the cost-to-come function
employed in classical heuristics-based path planning algorithms. Figure 3.5 shows a
graphical representation of κ(·) for multiple values of μ6, μ7, and μ8.

Assuming that the UAV is able to move to any adjacent unoccupied voxel, the
reference path {r̂k}nw

k=0 that minimizes (3.2) can be computed by applying any opti-
mization algorithm based on the use of a heuristic function over a graph, for instance,
the A∗ [19, Appendix C] or the L P A∗ algorithm [5]. Since μ8 scales the distance
between the UAV’s position and the next goal point r̂P̃,q , q ∈ {1, . . . , ng}, in (3.4),
and κ(α) ≥ μ8 for all α ≥ 0, it follows from the triangle inequality that the heuristic
function hk,q is consistent and hence, the proposed path planning subsystem does not
search voxels that were already visited in previous iterations of the heuristics-based
search algorithm, and the reference path {r̂k}nw

k=0 that minimizes (3.2) will be the
terminating path.

An alternative weighing function for tactical path planning has been proposed in
[2]. A key difference between (3.5) and the weighing function in [2] lies in the fact
that the user is now able to set explicitly the width of the region of influence of the
obstacles’ set. Detailed discussions on the role of weighing functions, such as (3.5),
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in designing path planner for tactical vehicles, while employing heuristics-based
search algorithms, are presented in [2, 20].

3.3.5 Numerical Solver Selection

In this section, we discuss the selection process for the optimization algorithm under-
lying the proposed path planner. To this goal, two algorithms were considered,
namely, the A∗ algorithm [19, Appendix C] and the L P A∗ algorithm [5]. An advan-
tage of L P A∗ over A∗ lies in the fact that, if part of the search graph varies over time,
then L P A∗ leverages those parts of the graph that remain unchanged, whereas A∗
must be re-initiated each time the search graph varies. Thus, L P A∗ is computation-
ally more efficient than A∗. This feature of L P A∗ is highly relevant for applications
such as those considered in this chapter, wherein the obstacles’ set is updated as the
UAV proceeds in its coverage task, and the path planning process must be reiterated
as the voxel map evolves.

To verify the computational advantage of L P A∗ over A∗, these algorithms have
been tested by means of four sets of 650 software-in-the-loop simulations performed
on an Intel i7 processor with 8 cores, whose maximum frequency is 4.30 GHz, and
which executes a Linux operating system. Two sets of simulations are aimed at testing
the computational efficiency of L P A∗ over A∗, while seeking tactical paths, and two
sets of simulations are aimed at testing the computational efficiency of L P A∗ over A∗,
while seeking reckless paths. In particular, tactical paths have been tested by seeking
paths that minimize the cost function (3.2) with μ6 = 4, μ7 = 8, and μ8 = 0.45,
and reckless paths have been tested by seeking paths that minimize the cost function
(3.2) with μ6 = 3, μ7 = 7, and μ8 = 0.75. In all simulations, the UAV reference
path connects a given initial position to a given final position, and must traverse the
voxel map of some office space captured by employing the camera-based navigation
system presented in [2]; this voxel map is shown in Figure 3.4. In order to challenge
the optimization algorithm’s speed in dynamic environments, an incremental number
of obstacles is introduced along the planned paths over the course of each simulation.
These obstacles are placed so that their distance is not smaller than one UAV length
and, hence, considering the size of the voxel map and the size of the UAV, a maximum
of 12 obstacles have been introduced. Fixed the number of obstacles to be introduced
in the voxel map along the UAV’s path, 50 simulations have been performed to assess
the computational speed of each optimization algorithm.

The results of the simulations obtained by employing the A∗ algorithm and the
L P A∗ algorithm with a tactical parameter set are shown in Figs. 3.6 and 3.7, respec-
tively, and the results of the simulations obtained by employing the A∗ algorithm
and the L P A∗ algorithm with a tactical parameter set are shown in Figs. 3.8 and 3.9,
respectively. It appears from Figs. 3.6 and 3.8 that the average computational time
for the A∗ algorithm remains substantially constant with the number of obstacles
introduced into the voxel map. Additionally, it appears from Figs. 3.6, 3.7, 3.8 and
3.9 that, if no obstacle or one obstacle is introduced along the UAV’s path, then
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Fig. 3.6 Statistical data on the computational time of the A∗ optimization algorithm as a function of
the number of obstacles introduced along the UAV’s path, while seeking tactical paths. The red line
indicates the average computational time over the 50 simulations, fixed the number of obstacles,
the blue box indicates the 25–75% range, the black lines indicate the non-outlier minimum and
maximum, and the red dots indicate outliers. The average computational time required to produce a
path is approximately constant with the number of obstacles and is 80.93 ms with average standard
deviation of 0.34 ms

the average computational time for the L P A∗ algorithm is higher than the average
computational time for the A∗ algorithm. However, for more than one obstacle, the
average computational time of L P A∗ is lower than the average computational time
of A∗. In light of these results, the L P A∗ algorithm has been employed for the pro-
posed path planner. Finally, the average computational time of the L P A∗ algorithm
appears to increase with the number of obstacles being introduced. However, intro-
ducing obstacles at a distance smaller than one UAV length is not relevant to the
scopes of this research.

3.3.6 Safety Measures

The objective of Algorithm 3.1 is to deduce goals r̂P̃,q , q = 0, . . . , ng, which lead the
UAV’s navigation system to under-explored areas of the voxel mapV. In some cases,
r̂P̃,q lies in an area that the navigation system can not observe from the UAV’s current
position rk(iΔT ), irrespectively of the yaw angle ψk(iΔT ) and pitch angle θk(iΔT ),
due to the bounds on the cameras’ field-of-view captured by ψmax and the maximum
pitch angle θmax. As a result, the planned path may attempt to traverse unexplored,
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Fig. 3.7 Statistical data on the computational time of the the L P A∗ optimization algorithm as a
function of the number of obstacles introduced along the UAV’s path while seeking tactical paths.
The average computational time required to produce a path is approximately constant with the
number of obstacles and is 15.45 ms with average standard deviation of 26.86 ms. If no obstacle or
only one obstacle is introduced along the UAV’s path, then, on average, then L P A∗ requires more
time than A∗ to recalculate the vehicle’s path. If more than one obstacle is introduced along the
UAV’s path, then, on average, the computational time is less than the computational time required
by A∗

unobservable voxels that are occupied and, hence, jeopardizes the UAV’s safety; see
Fig. 3.10 for a schematic representation of this case.

In this section, we present a novel approach to address the challenge of planning
a path while accounting for unobservable occupied voxels. This approach, which is
captured by Algorithm 3.3 and is schematically represented by Fig. 3.11, consists in
penalizing the path that leads the vehicle toward unobservable voxels. Given r̂k ∈ V \
O, the navigation system’s field-of-view ψmax, and the maximum pitch angle θmax,
the set of unobservable voxels is approximated by the closed coneKh,θblind

(
r̂k
) ⊂ R

3,
whose apex is at r̂k , whose axis is given by the UAV’s yaw axis, and whose semi-
aperture is θblind � π−ψmax

2 − θmax, and whose height is h > 0. Given a goal point r̂P̃,q ,

q = 0, . . . , ng, firstly, we determine if r̂P̃,q ∈ Kh,θblind

(
r̂k
)
. If so, then we define the

closed right circular cylinder Cdanger � Crdanger,hdanger ⊂ V \ O centered in the UAV,
whose axis is given by the UAV’s yaw axis, and whose semi-height is given by
hdanger > 0. Thus, we perform ray tracing across the voxels contained in the circle
Corigins � Crdanger,0 ⊂ V \ O contained in the plane orthogonal to the UAV’s yaw axis
and containing the center of the UAV, where rdanger > 0 denotes the circle’s radius,

and along the direction
r̂k−r̂P̃,q

‖r̂k−r̂P̃,q‖ . If any ray intersectsVunexplored, then the Euclidean
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Fig. 3.8 Statistical data on the computational time of the A∗ optimization algorithm as a function
of the number of obstacles introduced along the UAV’s path while seeking reckless paths. The
average computational time required to produce a path is approximately constant with the number
of obstacles and is 62.11 ms with average standard deviation of 0.37 ms

distance between any two points in r̂ p, r̂q ∈ Cdanger when evaluating (3.2) is replaced
with

d2(r̂ p, r̂q , M) =
√

(r̂ p − r̂q)Tdiag(1, 1, M)(r̂ p − r̂q), (3.6)

where M ≥ 1 denotes a user-defined bias set arbitrarily large to discourage any ver-
tical motion within Cdanger. To penalize positive changes in altitude and not penal-
ize negative ones, M in (3.6) can be set as M = max

{
max

{
sign(r̂ p,3 − r̂q,3), 1

}
,

sign(r̂ p,3 − r̂q,3)M1
}

where M1 > 1 is arbitrarily large. Alternatively, to penalize
negative changes in altitude and not penalize positive ones, M in (3.6) can be set as
M = max

{
max

{−sign(r̂ p,3 − r̂q,3), 1
}
,−sign(r̂ p,3 − r̂q,3)M1

}
. If a ray intersects

O, then ray tracing along that particular ray is terminated.
Next, the path planning problem is solved by employing the solver outlined in

Sect. 3.3.4. Once the search algorithm leaves Cdanger, the process above is repeated
until a new goal r̂P̃,q+1 is generated; in this case, the original distance function
d2(·, ·, M) is restored, that is, M is set to one.

To validate Algorithm 3.3, the proposed path planning system is executed in three
simulations involving the same environment, namely, a two-story building with an
access door per floor; see Fig. 3.12. In all simulations, we consider the same initial
position, namely, rk(iΔT ) = [17.0, 17.0, 1.4]T, which is on the first floor of the sim-
ulated map, and the same goal point, namely, r̂ P̃,q = [17.0, 17.0, 4.6]T, which is on



3 Autonomous Multi-rotor Unmanned Aerial Vehicles for Tactical Coverage 49

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of obstacles

0

10

20

30

40

50

60

C
om

pu
ta

tio
na

l t
im

e 
[m

s]

Fig. 3.9 Statistical data on the computational time of the the L P A∗ optimization algorithm as a
function of the number of obstacles introduced along the UAV’s path while seeking tactical paths.
The average computational time required to produce a path is approximately constant with the
number of obstacles and is 11.45 ms with average standard deviation of 17.34 ms. Similar to the
search for tactical paths, if no obstacle or only one obstacle is introduced along the UAV’s path,
then, on average, then L P A∗ requires more time than A∗ to recalculate the vehicle’s path. If more
than one obstacle is introduced along the UAV’s path, then, on average, the computational time is
less than the computational time required by A∗

Algorithm 3.3 Evaluate safety of the goal point r̂P̃,q and bias the cost function (3.2)

1: if
r̂k−r̂P̃,q

‖r̂k−r̂P̃,q ‖ · (r̂k,3 − r̂P̃,q,3)e3,3 ≥ cos θblind then

2: Compute Corigins
3: RayTracing(Corigins)
4: if Ray tracing encounteredVunexplored then
5: ∀(r̂ p, r̂q ) ∈ Cdanger × Cdanger, p �= q, r̂ p,3 �= r̂q,3 use (3.6) to compute (3.3).
6: end if
7: end if

the second floor. Thus, we observe the outcome of the proposed path planner with
and without Algorithm 3.3, while assuming that the voxels of the floor between the
start and goal points are occupied and unexplored; see the left image in Fig. 3.12.
Thus, we observe the outcome of the proposed path planner without Algorithm 3.3
assuming that the voxels of the floor between the start and goal points are occupied
and explored; see the right image in Fig. 3.12. It is apparent how, while employ-
ing Algorithm 3.3, the proposed path planner avoids the unexplored, occupied, and
unobservable, and hence, unsafe voxels between the start and goal point. Further-
more, employing Algorithm 3.3, the proposed planner produces a path similar to the
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Fig. 3.10 Schematic representation of a challenging scenario. In the left image, the UAV enters a
room through a doorway, and, there is a large cluster of unexplored and occupied voxels (marked
in blue) in the ceiling of the room. If the goal point r̂ P̃,q generated by Algorithm 3.1 is very close

to the UAV’s vertical axis, then the planned path {r̂k}nw
k=0 may intersect the cluster of unexplored

voxels in the ceiling, since, in this work, unexplored voxels are considered unoccupied. Because of
the cameras’ limited field of view, the UAV’s constraints on the attitude, which are imposed by the
trajectory planner (see Sect. 3.4 below), and the geometry of the room, there may be a set of voxels
that is impossible to observe for any yaw and pitch angles (marked in green in the right image).
If this set of unobservable voxels intersects the set of unexplored voxels, then this scenario may
jeopardize the UAV’s safety

path obtained assuming that the entire voxel map is explored. Conversely, without
Algorithm 3.3 and assuming that the voxels between the start and goal points are
unexplored and unobservable, the UAV attempts to traverse the floor between the
first and second floors.

3.4 Trajectory Planning System for Tactical Coverage

3.4.1 Overview

In order to exploit the UAV’s nonlinear dynamics while traversing the waypoints
outlined by the path planner, the proposed guidance system employs a trajectory
planner. In particular, reference trajectories for the UAV’s position and yaw angle



3 Autonomous Multi-rotor Unmanned Aerial Vehicles for Tactical Coverage 51

Fig. 3.11 Graphical representation of Algorithm 3.3 to assess the safety of the goal point r̂ P̃,q
and avoid traversing unobservable, occupied voxels. The first step is illustrated in the top left
image, in which we deduce if r̂ P̃,q lies in the set of unobservable voxels. Next, in the top right
image, the second step requires performing several ray tracings in the voxel map to determine if
there are unexplored voxels in the direction of r̂ P̃,q relative to the UAV’s position rk(iΔT ). If any
ray intersects an unexplored voxel, then there is a potential for a collision with an unobservable
occupied voxel. Next, if any ray intersects Vunexplored, then the Euclidean distance of traversing
from r̂ p ∈ Cdanger \ O to r̂q ∈ Cdanger \ O, p �= q , is modified according to (3.6); see bottom left
image. Finally, Algorithm 3.3 is repeated until rk(iΔT ) /∈ Cdanger; see bottom right image. The
changes to the transition costs persist until the goal is updated
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Fig. 3.12 Results of three simulations involving the proposed path planner. In all simulations, the
UAV is tasked with reaching a point directly above its initial position. However, a set of occupied
voxels lies between the start and goal points. The simulation results in the left image show the
UAV’s path employing Algorithm 3.3 and not employing this algorithm, assuming that the voxels
between the start and goal points are unobservable. In the first case, the UAV avoids the unobservable
occupied voxels and safely reaches the goal point. In the second point, the UAV attempts to traverse
the unobservable occupied voxels. The simulation results in the right image show the UAV’s path
employing assuming that all voxels are explored. In this case, the UAV’s path is similar to the path
obtained assuming that the voxels between the start and goal points are unobservable and employing
Algorithm 3.3

are computed as solutions of a linear–quadratic optimal control problem applied to
the feedback-linearized equations of motion of the UAV.

The optimal control problem’s time horizon is user-defined, and the cost function
captures the UAV’s competing needs of reaching the next waypoints and coasting
the obstacles’ set to seek shelter from potential threats. The underlying equality
constraints capture both the UAV’s output-feedback linearized, discretized equations
of motion and the need to interpolate the sequence of waypoints given by the UAV’s
reference path

{
r̂k
}nw

k=0 between the goal point r̂P̃,q , q ∈ {0, . . . , ng − 1}, and r̂P̃,q+1.
The inequality constraints capture the UAV’s need of avoiding obstacles, maintaining
the next goal point in the cameras’ fields of view at all times, verifying the bounds
on the Euler angles, and assuring that each propeller’s thrust force is nonnegative.
Lastly, the boundary conditions to the optimal trajectory planning problem capture
the need to reach the next waypoint and orient the onboard cameras’ focal axes
toward the next waypoint.

The proposed trajectory planning system has several distinctive features. The
linear–quadratic optimal control problem underlying the proposed trajectory planner
is solved numerically as a quadratic optimization problem by employing the model
predictive control methodology. The feedback-linearized equations of motion allow
to exploit the vehicle’s nonlinear dynamics and map areas above and below the UAV
by rotating the cameras, rather than varying the UAV’s altitude. Collision avoidance
constraints are captured by convex sets with affine boundaries, which are identified
by an original algorithm that allows to plan reference trajectories over sufficiently
long time horizons. Finally, applying the approach presented in [2], fast solutions
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to the trajectory planning problem are obtained by employing logarithmic barrier
functions to embed inequality constraints in the cost function and exploiting the
block-tridiagonal structure of the matrices that capture the quadratic cost function
and the constraint equations.

A key difference between the trajectory planning algorithm presented in this
chapter and the trajectory planning algorithm presented in [2] lays in the fact that, at
each time step, the proposed trajectory planner accounts for a user-defined number
of waypoints ahead of the UAV, whereas the trajectory planner discussed in [2]
only accounts for the next waypoint. This approach allows the proposed guidance
system to trajectories that account for the UAV’s tactical needs over larger distances.
Additionally, the proposed trajectory planner allows to choose how closely these
waypoints need to be followed, whereas the trajectory planner in [2] requires the
UAV to traverse all waypoints. As shown in [20], accounting for one waypoint at
the time and requiring to traverse all waypoints, it is particularly difficult to plan
trajectories that are both tactical and sufficiently short. Being able to coarsely follow
waypoints allows to set the path planner the UAV is drawn to the next goal point
through the shortest path, and the trajectory planner so that a more tactical behavior
is enforced by coasting the obstacles’ set more closely.

Compared to the collision avoidance algorithm in [2], the proposed collision
avoidance algorithm allows to compute larger convex sets, where the reference tra-
jectory can be computed and hence, allows to investigate a larger search space.
Finally, in [2], the MPC algorithm is applied irrespectively of whether the reference
trajectory traverses explored or unexplored voxels, whereas, in this work, the UAV’s
reference trajectory is not recomputed at each time step over those segments that tra-
verse explored voxels; this features allows to further reduce the trajectory planner’s
computational time.

3.4.2 Notation

Time is denoted by t ≥ 0, and we assume that the UAV is able to fly from r̂k ,
k ∈ {0, . . . , nw − 1}, to r̂k+1 in ntΔT time units, where both nt ∈ N and ΔT > 0
are user-defined. In general, both nt and ΔT are different for each pair of con-
secutive waypoints. However, the functional dependency of these quantities on
k ∈ {0, . . . , nw − 1} is omitted for simplicity of exposition.

The UAV’s mass is denoted by m > 0 and the gravitational acceleration is
denoted by g > 0. Assuming that the UAV’s roll, pitch, and yaw axes are principal
axes of inertia, the UAV’s matrix of inertia is denoted by I ∈ R

3×3, which is diagonal
and positive-definite. The UAV’s position is captured by rk : [0, ntΔT ] → R

3 \O,
k ∈ {0, . . . , nw − 1}, expressed in a conveniently located inertial reference frame I.
The UAV’s roll angle is denoted by φk : [0, ntΔT ] → (−π

2 , π
2

)
, k ∈ {0, . . . , nw − 1},

the UAV’s pitch angle is denoted by θk : [0, ntΔT ] → (−π
2 , π

2

)
, the UAV’s yaw

angle is denoted by ψk : [0, ntΔT ] → [0, 2π), the UAV’s velocity with respect to
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I is denoted by vk : [0, ntΔT ] → R
3, the UAV’s angular velocity with respect to

I is denoted by ωk : [0, ntΔT ] → R
3, and the the UAV’s state vector is denoted

by xk( jΔT )�
[
rT

k ( jΔT ), φ( jΔT ), θ( jΔT ), ψ( jΔT ), vT
k ( jΔT ), ωT

k ( jΔT )
]T

, j∈
{i, . . . , nt}, i ∈ {0, . . . , nt}, k ∈ {0, . . . , nw − 1}.

Let η1,k : [0, ntΔT ] → R, k ∈ {0, . . . , nw − 1}, denote the total thrust force’s
virtual control input, the total thrust force produced by the UAV’s propellers is
defined as u1,k(·) such that u1,k(t) = [1, 0] δk(t), t ∈ [0, ntΔT ], and

δ̇k(t) =
[

0 1
0 0

]
δk(t) +

[
0
1

]
η1,k(t),

[
u1,k(0)

u1,k(ntΔT )

]
=
[

u1,0,k

u1,f,k

]
, t ∈ [0, ntΔT ].

(3.7)

The roll moment produced by the UAV’s propellers is denoted by u2,k(·), the pitch
moment produced by the UAV’s propellers is denoted by u3,k(·), and the yaw
moment produced by the UAV’s propellers is denoted by u4,k(·). The UAV’s con-

trol input is defined as uk(t) �
[
u1,k(t), u2,k(t), u3,k(t), u4,k(t)

]T
, t ∈ [0, ntΔT ],

k ∈ {0, . . . , nw − 1}, and the vector of thrust forces produced by each propeller is
defined as

Tk(t) � MT,uuk(t), t ∈ [0, ntΔT ], (3.8)

where the i th component of Tk(·), i = 1, . . . , 4, namely, Ti,k : [0, ntΔT ] → [0,∞),
denotes the thrust force produced by the i th propeller,

MT,u � 1

4

⎡⎢⎢⎣
1 0 2l−1 −c−1

T
1 −2l−1 0 c−1

T
1 0 −2l−1 −c−1

T
1 2l−1 0 c−1

T

⎤⎥⎥⎦, l > 0 denotes the distance of the propellers

from the vehicle’s barycenter, and cT > 0 denotes the propellers’ drag coefficient
[21].

3.4.3 Output-Feedback Linearized Equations of Motion

Neglecting the aerodynamic drag, the inertial counter-torque, and the gyroscopic
effect [21], which are small for Class I aircraft such as those considered in this
chapter, the UAV’s continuous-time equations of motion are given by
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ṙk(t) = vk(t), rk(0) = rinit,k , t ∈ [0, ntνs,kΔT ], k ∈ {0, . . . , nw − 1}, (3.9a)

v̇k(t) = m−1 R(φk(t), θk(t), ψk(t))[0, 0, u1,k(t)]T − [0, 0, g]T, rk(ntνs,kΔT ) = rend,k ,

(3.9b)⎡⎣φ̇k(t)
θ̇k(t)
ψ̇k(t)

⎤⎦ = Γ −1(φk(t), θk(t))ωk(t),

⎡⎣φk(0)

θk(0)

ψk(0)

⎤⎦ =
⎡⎣φ0,k

θ0,k

ψ0,k

⎤⎦ , (3.9c)

ω̇k(t) = I −1

⎛⎝⎡⎣u2,k(t)
u3,k(t)
u4,k(t)

⎤⎦− ω×
k (t)Iωk(t)

⎞⎠ ,

⎡⎣φk(ntνs,kΔT )

θk(ntνs,kΔT )

ψk(ntνs,kΔT )

⎤⎦ =
⎡⎣φf,k

θf,k

ψf,k

⎤⎦ , (3.9d)

where

R(φk, θk, ψk) �

⎡⎣cos ψk − sin ψk 0
sin ψk cos ψk 0

0 0 1

⎤⎦⎡⎣ cos θk 0 sin θk

0 1 0
− sin θk 0 cos θk

⎤⎦⎡⎣1 0 0
0 cos φk − sin φk

0 sin φk cos φk

⎤⎦ ,

(φk, θk, ψk) ∈
(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
× [0, 2π),

(3.10)

captures the UAV’s attitude relative to the inertial reference frame I,

Γ (φk, θk) �

⎡⎣1 0 − sin θk

0 cos φk cos θk sin φk

0 − sin φk cos θk cos φk

⎤⎦ , (3.11)

and νs,k ∈ {1, . . . , nw − k} denotes the user-defined path stride; we recall that
Γ (φk, θk), k ∈ {0, . . . , nw − 1}, is invertible for all (φk, θk) ∈ (−π

2 , π
2

)× (−π
2 , π

2

)
[22, Chap. 2].

Detailed discussions on the path stride are provided in Sects. 3.4.6 and 3.4.7
below, and a discussion on the boundary conditions rinit,k and rend,k ∈ R

3 is provided
in Sect. 3.4.7. The initial conditions φ0,k , θ0,k , and ψ0,k , k ∈ {0, . . . , nw − 1}, are
user-defined. Employing (3.9a) and (3.9b) to produce reference trajectories, φ0,k ,
θ0,k , and ψ0,k , k ∈ {0, . . . , nw − 1}, are set as the UAV’s angular position at the time
the MPC algorithm is initiated. The endpoint conditions for (3.9c) and (3.9d) are
set so that φf,k , k ∈ {0, . . . , nw − 1}, θf,k , and ψf,k are the Euler angles of the 3-2-1
rotation sequence underlying the rotation matrix

Rf,k �
[
n̂x,k, n̂ y,k, n̂z,k

]T
, (3.12)

where n̂x,k � ‖r̂k+νs,k −r̂k‖−1
(
r̂k+νs,k −r̂k

)
, n̂ y,k � n̂×

x,k [0, εk, g]T /‖n̂×
x,k [0, εk, g]T ‖,

n̂z,k � n̂×
x,k n̂ y,k , and εk is such that if n̂x,k �= [0, 0, g]T, then εk = 0, and if n̂x,k =

[0, 0, g]T, then εk �= 0 is small and user-defined. The rotation matrix Rf,k , k ∈
{0, . . . , nw − 1}, captures the attitude of a UAV, whose roll axis intersects both r̂k

and r̂k+νs,k . This matrix is well-defined since the L P A∗ algorithm underlying the
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proposed path planner does not generate two identical consecutive waypoints, that
is, r̂k �= r̂k+1, for all k ∈ {0, . . . , nw − 1}. Moreover, n̂ y,k , k ∈ {0, . . . , nw − 1}, has
been designed so that n̂x,k and [0, εk, g]T are not collinear, and hence Rf,k is always
a rotation matrix.

Quadcopter UAVs are underactuated [21], since only four of their six degrees of
freedom can be controlled directly. In this chapter, we are interested in regulating the
UAV’s position rk(·), k ∈ {0, . . . , nw − 1}, and its yaw angle ψk(·) since the cameras’
focal axes is aligned with the UAV’s roll axis. To this goal, setting

[
rT

k (t), ψk(t)
]T

,
t ∈ [0, ntνs,kΔT ], k ∈ {0, . . . , nw − 1}, as the measured output, and applying Propo-
sition 5.1.2 of [23], we verify that the dynamical system given by (3.9) and (3.7) has
vector relative degree {4, 4, 4, 2}, and[

r (4)
k (t)
ψ̈k(t)

]
= f (rk(t), φk(t), θk(t), ψk(t), ωk(t), u1,k(t))

+ G−1(rk(t), φk(t), θk(t), ψk(t), u1,k(t))

⎡⎢⎢⎣
η1,k(t)
u2,k(t)
u3,k(t)
u4,k(t)

⎤⎥⎥⎦ ,

[
rk(0)

rk(ntνs,kΔT )

]
=
[

rinit,k

rend,k

]
,

[
r̈k(0)

r̈k(ntνs,kΔT )

]
=
[

r̈init,k

r̈end,k

]
,[

ψk(0)

ψk(ntνs,kΔT )

]
=
[
ψ0,k

ψf,k

]
, t ∈ [0, ntνs,kΔT ], (3.13)

where

G−1(rk , φk , θk , ψk , u1,k) �

⎡⎢⎢⎢⎢⎢⎢⎣

msφksψk + mcφkcψksθk mcφksψksθk − mcψksφk mcφkcθk 0

I1m(cφk sψk−cψk sφk sθk )
u1,k

− I1m(cφk cψk+sψk sφk sθk )
u1,k

− I1mcθk sφk
u1,k

0

I2mcψk cθk
u1,k

I2mcθk sψk
u1,k

− I2msθk
u1,k

0

− I3mcψk cθk sφk
u1,k cφk

− I3mcθk sψk sφk
u1,k cφk

I3msθk sφk
u1,k cφk

I3mcθk
cφk

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(3.14)

cα = cos α, α ∈ R, sα = sin α, I = diag(I1, I2, I3), and f : R
3 × (−π

2 , π
2

)×(−π
2 , π

2

)× [0, 2π) × R
3 × R → R

4; an expression for f (·, ·, ·, ·, ·, ·)
is omitted for brevity. It holds that det G(rk, φk, θk, ψk, u1,k) = u2

1,k cos φk

m3det(I ) cos θk
,

(rk, φk, θk, ψk, u1,k) ∈ R
3 × (−π

2 , π
2

)× (−π
2 , π

2

)× [0, 2π) × (0,∞), and hence,
G(·, ·, ·, ·, ·, ·) is invertible if and only if u1 �= 0 since φk ∈ (−π

2 , π
2

)
. The con-

straints on the UAV’s roll and pitch angles and the control input, namely, the con-
ditions whereby φk(t) ∈ (−π

2 , π
2

)
, t ∈ [0, ntνs,kΔT ], k ∈ {0, . . . , nw − 1}, θk(t) ∈(−π

2 , π
2

)
, and u1,k(t) > 0, are enforced by the proposed trajectory planning

algorithm; for details, see Sect. 3.4.6 below.
It follows from (3.9) that for the UAV’s attitude to be captured by the triplet

(φ0,k, θ0,k, ψ0,k) at t = 0 and the triplet (φf,k, θf,k, ψf,k) at t = ntνs,kΔT , it must
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hold that

r̈init,k = m−1 R(φ0,k, θ0,k, ψ0,k)[0, 0, u1,0,k]T − [0, 0, g]T, k ∈ {0, . . . , nw − 1},
(3.15)

r̈end,k = m−1 R(φf,k, θf,k, ψf,k)[0, 0, u1,f,k]T − [0, 0, g]T. (3.16)

Thus, given r̈init,k, r̈end,k ∈ R
3 as user-defined, we deduce u1,0,k, u1,f,k ∈ R, namely,

the boundary conditions of (3.7), from (3.15) and (3.16). The boundary conditions
on the UAV’s acceleration r̈init,k and r̈end,k ∈ R

3 are provided in Sect. 3.4.7 below.
Next, let

ζ(rk , φk , θk , ψk , ωk , u1,k , λk ) � G(rk , φk , θk , ψk , ωk , u1,k )

(
− f (rk , φk , θk , ψk , ωk , u1,k )

+
[

Ar,0rk (t) + Ar,1ṙk (t) + Ar,2r̈k (t) + Ar,3r (3)
k (t)

Aψ,0ψk(t) + Aψ,1ψ̇k (t)

]
+
[

Br

Bψ

]
λk

)
,

(rk , φk , θk , ψk , ωk , u1,k , λk) ∈ R
3 ×

(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
× [0, 2π) × R

3 × R × R
4,

k ∈ {0, . . . , nw − 1}, (3.17)

where

Ãr �

⎡⎢⎢⎣
03×3 13 03×3 03×3

03×3 03×3 13 03×3

03×3 03×3 03×3 13

Ar,0 Ar,1 Ar,2 Ar,3

⎤⎥⎥⎦ ∈ R
12×12, Ãψ �

[
0 1

Aψ,0 Aψ,1

]
∈ R

2×2, (3.18)

are Hurwitz,

B̃r �
[

09×4

Br

]
∈ R

12×4, B̃ψ �
[

0
Bψ

]
∈ R

2×4 (3.19)

and the pairs ( Ãr , B̃r ) and ( Ãψ, B̃ψ) are controllable. If

[
η1,k(t), u2,k(t), u3,k(t), u4,k(t)

]T = ζk(t), t ∈ [0, ntνs,kΔT ], k ∈ {0, . . . , nw − 1},
(3.20)

where ζk(t) denotes ζ(rk(t), φk(t), θk(t), ψk(t), ωk(t), u1,k(t), λk(t)) for brevity,
then the UAV’s equations of motion (3.9) are output-feedback linearized and

χ̇k(t) = Ãχk(t) + B̃λk(t), t ∈ [0, ntνs,kΔT ], (3.21)

where χk(t) �
[
rT
k (t), ṙT

k (t), r̈T
k (t), r (3)T

k (t), ψk(t), ψ̇k(t)
]T

, Ã � blockdiag( Ãr , Ãψ)

and B̃ �
[

B̃T
r , B̃T

ψ

]T
. Thus, it follows from (3.21) that the discrete-time, linearized,
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zero-order hold [24], output-feedback linearized equations of motion of a quadcopter
UAV are given by

χk(( j + 1)ΔT ) = Aχk( jΔT ) + Bλk( jΔT ),

j ∈ {i, . . . , ntνs,k − 1}, i ∈ {0, . . . , ntνs,k − 1}, k ∈ {0, . . . , nw − 1},
(3.22)

where A = eÃΔT and B = ∫ ΔT
0 eÃσ dσ B̃; the boundary conditions for (3.21) and

(3.22) are the same boundary conditions as for (3.13). Equation (3.22) serves as an
equality constraint for the model predictive control algorithm employed to outline
tactical reference trajectories for UAVs.

Given λk( jΔT ), j ∈ {i, . . . , ntνs,k − 1}, i ∈ {0, . . . , ntνs,k − 1}, k ∈ {0, . . . ,

nw − 1}, the total thrust force’s virtual control input η1,k( jΔT ), the roll moment
produced by the UAV’s propellers u2,k( jΔT ), the pitch moment u3,k( jΔT ), and the
yaw moment u4,k( jΔT ) are deduced from (3.20) at t = jΔT employing rk( jΔT ),
φk( jΔT ), θk( jΔT ), ψk( jΔT ), and their derivatives estimated by the UAV’s naviga-
tion system. Then, the total thrust force is computed as u1,k( jΔT ) = [1, 0]δk( jΔT ),
j ∈ {i, . . . , nt − 1}, i ∈ {0, . . . , nt − 1}, k ∈ {0, . . . , nw − 1}, where

δk(( j + 1)ΔT ) =
[

1 1
0 1

]
δk( jΔT ) + 1

2

[
ΔT 2

2ΔT

]
eT

1,4ζ( jΔT ), (3.23)

is the discrete-time zero-order hold counterpart of (3.7). Finally, the thrust force
produced by each propeller is computed by applying (3.8).

3.4.4 Collision Avoidance Constraints

The constraint set, which contains the UAV, excludes obstacle points, and is suffi-
ciently large to contain viable reference trajectories, is captured by

Fr,k(iΔT )rk(iΔT ) ≤≤ fr,k(iΔT ), i ∈ {0, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1},
(3.24)

where the Fr,k : R → R
ncoll×3 is such that

eT
q,ncoll

Fr,k(iΔT ) �

⎡⎣cos (μ9 + 2μ9(q − 1)) cos (μ10 + 2μ10(q − 1))

sin (μ9 + 2μ9(q − 1)) cos (μ10 + 2μ10(q − 1))

(−1)q sin (μ10 + 2μ10(q − 1))

⎤⎦T

,

q ∈ {1, . . . , ncoll},
(3.25)
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μ9 > 0 and μ10 > 0 are user-defined and such that ncoll � 16π2/(μ9μ10) is an even
integer and denotes the number of collision avoidance constraints, fr,k : R → R

ncoll

is such that

eT
q,ncoll

fr,k(iΔT ) � min

{
min

p∈Sq ∩Oc,i,k

eT
q,ncoll

Fr,k(iΔT )p,

min
s∈{1,...,ncoll}\{q} eT

q,ncoll
Fr,k(iΔT )ps(iΔT )

}
,

(3.26)

Sq ⊂ R
3 is a right square spherical pyramid, whose apex is centered in the UAV,

whose bisector is given by (3.25), and whose sides have user-defined length,

ps(iΔT ) � arg minp∈Ss∩Oc,i,k
FT

r,k(iΔT )es,ncoll e
T
s,ncoll

Fr,k(iΔT )p, s ∈ {1, . . . , ncoll},
(3.27)

and Oc,i,k ⊆ O captures a set of obstacles’ points that are more likely to be impacted
by the UAV. In practice, the convex constraint set with affine boundaries captured by
(3.24) is produced by partitioning a sphere centered in the UAV in ncoll right square
spherical pyramids, and constructing hyperplanes orthogonal to the bisector of each
pyramid [25]. The use of the affine inequalities (3.24) to capture collision avoidance
constraints is essential to guarantee fast numerical solutions of the proposed trajectory
planning problem.

To deduce Oc,i,k , we propose an approach that we named the Bubble Bath algo-
rithm. This original method selects those obstacle points that are within some user-
defined radius from the UAV’s position, are contained in the half-space defined by
the UAV’s velocity vector, and are directly accessible to the UAV. In the Bubble Bath
algorithm, first, we define the closed set

Hρ(rk(iΔT )) �
{

x ∈ Bρ(rk(iΔT )) ∩ O : xTvk(iΔT ) ≥ 0
}
,

i ∈ {0, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1},
(3.28)

where ρ � max{‖vk(iΔT )‖, v}iΔT and v > 0 is user-defined. This closed set cap-
tures all obstacle points that are within a distance ρ from the UAV’s position
at t = iΔT and are included in the closed half-space determined by the UAV’s
velocity vector. It follows from the definition of ρ that the size of Oc,i,k increases
with the UAV’s velocity; the parameter v captures a user-defined safety margin.
Next, we compute the closed parent ellipsoid E (Pk(iΔT ), rk(iΔT ), ck(iΔT )/μ11),
i ∈ {0, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1}, where Pk(iΔT ) ∈ R

3×3 and ck(iΔT ) ∈ R

are solutions of the quadratic programming problem with cost function

min ck(iΔT ) (3.29)
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and constraints

g1(Pk(iΔT ), rk(iΔT ), wα, ck(iΔT )) ≥ 0, α ∈ {1, . . . , nUAV}, (3.30a)

g2(Pk(iΔT ), rk(iΔT ), wβ, ck(iΔT )) ≤ 0, β ∈ {1, . . . , nH }, (3.30b)

g3(Pk(iΔT )) ≤ 03×3, (3.30c)

g4(ck(iΔT )) < 0, (3.30d)

g1(P, r, w, c) � (w − r)T P(w − r) − c, (P, r, w, c) ∈ R
3×3 × R

3 × R
3 × R,

g2(P, r, w, c) � (w − r)T P(w − r) − c, g3(P) � P + 13, g4(c) � c, μ11 > 1 is a
user-defined safety margin, and nH denotes the cardinality ofHρ(rk(iΔT )); condi-
tions (3.30c) and (3.30d) guarantee that E (Pk(iΔT ), rk(iΔT ), ck(iΔT )/μ11) is an
ellipsoid, and (3.30a) and (3.30b) guarantee that the parent ellipsoid includes all the
UAV’s points wα , α ∈ {1, . . . , nUAV}, and excludes all points ofHρ(rk(iΔT )). Suc-
cessively, for all i ∈ {0, . . . , ntνs,k} and k ∈ {0, . . . , nw − 1}, we compute � closed
children ellipsoids, E(P̃k,l(iΔT ), r̃k,l(iΔT ), c̃k,l(iΔT )), l ∈ {1, . . . , �}, where � is
user-defined, P̃k,l(iΔT ) ∈ R

3×3 and c̃k,l(iΔT ) ∈ R are solutions of the quadratic
programming problem with cost function

min c̃k,l(iΔT ) (3.31)

and constraints given by (3.30b)–(3.30d) with Pk(·) replaced by P̃k,l(·), rk(·) replaced
by r̃k,l(·),

r̃k,l(iΔT ) �

√
ck(iΔT )P−1

k (iΔT )

μ11

⎡⎣cos γl cos ηl

sin γl cos ηl

sin ηl

⎤⎦+ rk(iΔT ), (3.32)

ck(·) replaced by c̃k,l(·), and γl, ηl ∈ R are user-defined. Thus, children ellipsoids
exclude all obstacle points inHρ(rk(iΔT )), and it follows from (3.32) that children
ellipsoids are Finally, we define

Oc,i,k �
{

r ∈ Hρ(rk (iΔT )) : ‖c−1/2
k (iΔT )P1/2

k (iΔT )(r − rk (iΔT ))‖ ≤ 1 + μ12

}
∪�

l=1

{
r ∈ Hρ(rk (iΔT )) : ‖c̃−1/2

k,l (iΔT )P̃1/2
k,l (iΔT )(r − r̃k,l (iΔT ))‖ ≤ 1 + μ12

}
,

i ∈ {0, . . . , ntνs,k }, k ∈ {0, . . . , nw − 1}, (3.33)

where μ12 > 0 denotes a user-defined safety margin. In practice, the subset of obsta-
cle pointsOc,i,k is given by the set of all points that are within a distance smaller than or
equal to μ12 from any of the children ellipsoids or E (Pk(iΔT ), rk(iΔT ), ck(iΔT ));
note that it follows from (3.30b) that ∂E (Pk(iΔT ), rk(iΔT ), ck(iΔT )) comprises
at least one point of the obstacles’ set O.

This technique has been named Bubble Bath algorithm because the children ellip-
soids are centered at the parent ellipsoid and cover unoccupied voxels surrounding
the UAV and hence, mimic the behavior of bubbles in a bathtub. The larger the num-
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Fig. 3.13 Schematic representation of the proposed approach to generate affine constraint sets from
the set of occupied voxels O. Firstly, the parent ellipsoid, which contains the UAV and excludes
all obstacle points, is created. Successively, multiple children ellipsoids, which are centered on
the boundary of the parent ellipsoid, are generated. Then, the subset of obstacle points Oc,i,k are
computed as the set of points of O within some user-defined distance from the parent or any of the
children ellipsoids. Finally, the affine set is computed as the subset of the state space that contains
the UAV and excludes all points of Oc,i,k

ber of children ellipsoids, the more accurate is this technique in identifying occupied
voxels that could be impacted by the UAV.

Figure 3.13 provides a graphical representation of the proposed approach to iden-
tifying the subset Oc,i,k of the obstacles’ set O for some i ∈ {0, . . . , ntνs,k} and
k ∈ {0, . . . , nw − 1}, and create the affine constraint set captured by (3.24). Although
the proposed technique applies to three-dimensional problems, a two-dimensional
example has been shown for clarity of visualization.

3.4.4.1 Study on the Computational Cost of the Bubble Bath Algorithm

To assess the efficiency of the Bubble Bath algorithm and compare its perfor-
mance with the iterative regional inflation by SDP (IRIS) algorithm [26–28], the
safe flight corridor (SFC) algorithm [29], and the minimum distance collision avoid-
ance (MDCA) algorithm [2], we consider as a test case a two-story house comprising
multiple rooms on both floors and a set of stairs; see Fig. 3.14 for top-down views
of both floors. Within this map, we consider 10 paths, each departing from a dif-
ferent room on the first floor, converging at the bottom of the stairs, proceeding to
the second floor parallel along the stairs, and reaching the same point on the second
floor. For each path, the distance between waypoints is 25 voxels; the shortest path
includes 175 waypoints, and the longest path includes 400 waypoints. Each of the 4
algorithms being tested is executed 50 times along each path on a personal computer
equipped with an Intel 8Core i7, 4.5 GHz processor, a 32 Gb DDR4 memory, and
MATLAB® 2021b.
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Fig. 3.14 Paths used for testing the computational efficiency of the Bubble Bath algorithm. The
beginning of each path is marked with the numbers of waypoints

Table 3.1 Coefficients of the first-order linear regressions relating path length and computation
times

Algorithm Slope Offset

Bubble Bath 8.669 64.354

MDCA 3.374 12.920

SFC 19.684 3.693

IRIS 12.537 16.510

As shown in Fig. 3.15, MDCA produces the lowest computational time, and the
Bubble Bath algorithm produces the second-best computational time. Furthermore,
for all algorithms, the computational time increases with the number of points in the
path. From an analysis of the data of a first-order regression for each algorithm, it is
apparent that MDCA grows the least with the number of waypoints, and Bubble Bath
has the second slowest increasing computational time per number of waypoints; for
details, see Table 3.1.

Figure 3.16 shows statistical information about the volumes of the sets produced
by the Bubble Bath algorithm, MDCA, SFC, and IRIS. Although SFC and IRIS
produce the largest average and the largest minimum constraint sets, the average
maximum constraint set volume is similar across the four algorithms. Finally,
Fig. 3.17 shows that, except for IRIS, all algorithms produce constraint sets, whose
volumes’ standard deviations are similar. Finally, it is worthwhile remarking that
SFC is able to produce unbounded sets, but in a relatively small number.

In conclusion, for consistency of generated volumes and computational speed,
MDCA and Bubble Bath are preferable. If the volume of the constraint set is more
important than the computational time, then IRIS would be a preferable choice.
Finally, the Bubble Bath algorithm has the most consistent volume generated and
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Fig. 3.15 Average computational times of the Bubble Bath algorithm, the MDCA, SFC, and IRIS
along each path

computational time throughout testing, making it worthy of consideration for appli-
cations where predictability is a top priority.

3.4.5 Constraints on the UAV’s Attitude

As discussed in Sect. 3.4.3, the output-feedback linearized equations of motion
(3.22) yield for φk( jΔT ) ∈ (−π

2 , π
2

)
, j ∈ {i, . . . , ntνs,k}, i ∈ {0, . . . , ntνs,k}, k ∈

{0, . . . , nw − 1}, and θk( jΔT ) ∈ (−π
2 , π

2

)
. Furthermore, the user may want to

impose constraints on the yaw angle so that ψk( jΔT ) ∈ (−ψmax, ψmax), j ∈ {i, . . . ,
ntνs,k}, i ∈ {0, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1}, where ψmax > 0. For instance, by
setting ψmax = π

2 , the user imposes that the UAV’s roll axis always points in the
direction of motion.

In this chapter, the constraints on the yaw angle are imposed by means of the
inequality constraints

−ψk( jΔT ) ≤ −ψf,k + ψmax, j ∈ {i, . . . , ntνs,k}, i ∈ {0, . . . , ntνs,k},
k ∈ {0, . . . , nw − 1},

(3.34a)

ψk( jΔT ) ≤ ψf,k + ψmax, (3.34b)
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Fig. 3.16 Boxplots of some characteristics of the volumes of the collision avoidance sets produced
by the Bubble Bath algorithm, MDCA, SFC, and IRIS
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Fig. 3.17 Standard deviations of the volumes generated by each algorithm, the number of
unbounded constraint sets per path, and the number of obstacles contained along each of the 10
paths
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or, alternatively, by

Fψ(iΔT )ψk( jΔT ) ≤≤ fψ,k(iΔT ), i ∈ {0, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1},
(3.35)

where

Fψ(iΔT ) � [−1, 1]T , (3.36a)

fψ,k(iΔT ) �
[
ψmax − ψf,k, ψmax + ψf,k

]T
. (3.36b)

As discussed in Sect. 3.4.6 below, the constraints on the pitch and roll angles are
imposed by means of barrier functions.

3.4.6 Cost Function Definition

The proposed trajectory planner produces reference trajectories that minimize a cost
function that encourages four objectives, namely, following waypoints produced
by the path planner, reducing the control effort, encouraging tactical or reckless
behaviors, and discouraging the UAV’s pitch and roll angles from approaching the
boundaries of the interval (−π/2, π/2). A cost function that meets the first three
objectives is given by

J̃ [rk(0), ψk(0), λk(·)]

�
k+νs,k−1∑

l=k

νl−k
dis �f (rl (ntΔT ), ψl (ntΔT )) +

k+νs,k−1∑
l=k

nt−1∑
i=0

νl−k
dis �̃(rl (iΔT ), ψl (iΔT ), λl (iΔT )),

k ∈ {0, . . . , nw − 1}, (3.37)

where νdis ∈ (0, 1),

�̃(rk, ψk, λk) �
[

r̃k

λk

]T

R̃k

[
r̃k

λk

]
+ qψ(ψk − ψf,k)

2 + q̃T
r r̃k + q̃T

λ λk,

(rk, ψk, λk) ∈ R
3 × R × R

4, (3.38a)

�f(rk, ψk) �
(
rk − r̂k+νs,k

)T
Rr,f

(
rk − r̂k+νs,k

)+ qψ(ψk − ψf,k)
2, (3.38b)

R̃k �
[

R̃r R̃r,λ

R̃T
r,λ Rλ

]
, R̃r ∈ R

3×3 is symmetric, R̃r,λ ∈ R
3×4, and Rλ ∈ R

4×4 is positive-

definite and such that

R̃r − 2R̃T
r,λ R−1

λ R̃r,λ > 0, (3.39)
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q̃r ∈ R
3, q̃λ ∈ R

4,

r̃k(iΔT ) � μ13
[
rk(iΔT ) − r̂k+νs,k

]+ (1 − μ13) fsat
(
μ14(r̂k − rOc,i,k )

) [
rk(iΔT ) − rOc,i,k

]
,

i ∈ {0, . . . , ntνs,k − 1}, (3.40)

μ13 ∈ (0, 1] and μ14 > 0 are user-defined, rk(·) verifies (3.22), fsat(w) � sat (‖w‖)
‖w‖ ,

w ∈ R
n , rOc,i,k � d2(r̂k,Oc,i,k), and Rr,f ∈ R

3×3 is symmetric and nonnegative-
definite, and qψ > 0. By the Schur complement condition on the positive-definiteness
of block-matrices [30, pp. 7–8], (3.39) implies that R̃ is symmetric and positive-
definite.

As discussed in Sect. 3.4.7 below, the path stride νs,k , k ∈ {0, . . . , nw − 1}, allows
to set boundary conditions for the trajectory planning problem at the waypoint r̂k+νs,k .
Thus, the reference trajectory does not traverse the waypoints r̂k+1, . . . , r̂k+νs,k−1.
However, for all k ∈ {0, . . . , nw − 1}, the need to outline a reference trajectory
that approximates the waypoints r̂k+1, . . . , r̂k+νs,k−1, is captured by the cost func-
tion (3.37).

The term νl−k
dis , k ∈ {0, . . . , nw − 1}, in (3.37) is a discount factor applied to

the objective function so that, while the UAV approaches r̂k+1, the influence of
r̂k+2, . . . , r̂k+νs,k on the cost function is less marked. Furthermore, if l is consider-
ably larger than k, then the reference trajectory is more likely to intersect the set of
unexplored voxelsVunexplored. Therefore, the waypoints r̂k+2, . . . , r̂k+νs,k should con-
tribute less to the overall cost, since confidence in the feasibility of these trajectories
is lower.

The Mayer’s function (3.38b) captures the UAV’s need to reach the waypoint
r̂k+νs,k , k ∈ {0, . . . , nw − 1}, and point its roll axis toward this waypoint. The first
term on the right-hand side of (3.40) captures the UAV’s distance from r̂k+νs,k , k ∈
{0, . . . , nw − 1}, and the second term on the right-hand side of (3.40) captures the
UAV’s distance from the obstacles’ set O. The Lagrangian function (3.38a) captures
the UAV’s competing needs of reaching the waypoint r̂k+νs,k , k ∈ {0, . . . , nw − 1},
and coasting the obstacles’ set, while pointing the onboard cameras toward r̂k+νs,k .
Indeed, if μ13 = 1, then r̃k(iΔT ) = rk(iΔT ) − r̂k+νs,k , i ∈ {0, . . . , ntνs,k − 1}, k ∈
{0, . . . , nw − 1}, and minimizing (3.37) induces a reckless behavior in the UAV,
since its only goal is to reach the waypoint, and if μ13 ∈ (0, 1), then coasting the
obstacles’ set becomes a higher priority. The function fsat(·) in (3.40) reduces the
attractive effect of obstacles at a distance from the waypoint r̂k , k ∈ {0, . . . , nw − 1},
that is larger than μ−1

14 . Indeed, fsat(w) → 1 as ‖w‖ → 0, fsat(μ14w) = 1 for all w ∈
Bμ−1

14
(0n), fsat(μ14w) < 1 for all w ∈ R

n \ Bμ−1
14

(0n), and limw→∞ fsat(μ14w) = 0.

Detailed discussions on the role of the weighing matrices R̃r , R̃r,λ, Rλ, the weighing
term qψ , and the user-defined parameters μ13 and μ14 in designing trajectory planners
for tactical vehicles based on the model predictive control framework are presented
in [2, 20].
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To recast (3.37) as an explicit function of both the UAV’s position rk(·), k ∈
{0, . . . , nw − 1}, and λk(·), we substitute (3.40) in (3.38a), and note that minimizing
(3.37) is equivalent to minimizing

k+νs,k−1∑
l=k

νl−k
dis �̂f (rl (ntΔT ), ψl (ntΔT )) +

k+νs,k−1∑
l=k

nt−1∑
i=0

νl−k
dis �(rl (iΔT ),ψl (iΔT ), λl(iΔT )),

k ∈{0, . . . , nw − 1}, (3.41)

where

�̂(rk, ψk, λk) �
[

rk

λk

]T

Rk

[
rk

λk

]
+ qψ(ψk − ψf,k)

2 + qT
r,k(τ )rk + qT

λ,k(τ )λk,

(rk, ψk, λk) ∈ R
3 × R × R

4, (3.42a)

Rk �
[

Rr,k Rr,λ,k

RT
r,λ,k Rλ

]
, (3.42b)

Rr,k(τ ) �
[
1 + μ13(1 − fsat

(
μ14(r̂k − rOc,i,k ))

)]
R̃r , (3.42c)

Rr,λ,k(τ ) �
[
1 + μ13(1 − fsat

(
μ14(r̂k − rOc,i,k ))

)]
R̃r,λ, (3.42d)

qr,k(τ ) �
[
1 + μ13(1 − fsat

(
μ14(r̂k − rOc,i,k ))

)] (
q̃r − 2R̃r

[
μ13r̂k+1

+(1 − μ13) fsat
(
μ14(r̂k − rOc,i,k )

)
rOc,i,k

])
,

(3.42e)

qλ,k(τ ) � q̃λ − 2R̃T
r,λ

[
μ13r̂k+1 + (1 − μ13) fsat

(
μ14(r̂k − rOc,i,k )

)
rOc,i,k

]
,

(3.42f)

Next, we modify (3.41) to meet the fourth design objective, namely, constraining the
UAV’s pitch and roll angles.

Employing a model predictive control framework to minimize (3.41), in this
chapter the UAV’s reference trajectories and the corresponding control inputs are
computed iteratively at each time step over the discrete time horizon
{iΔT, . . . , ntνs,kΔT }, i ∈ {0, . . . , ntνs,k − 1}, as minimizers of

J [iΔT, rk(iΔT ), ψk(iΔT ), λk(·)]

�
k+νs,k−1∑

l=k

νl−k
dis �f (rk(ntΔT ), ψk(ntΔT )) +

nt−1∑
j=i

�( jΔT, rk( jΔT ), ψk( jΔT ), λk( jΔT ))

+
k+νs,k−1∑

l=k+1

nt−1∑
i=0

νl−k
dis �(iΔT, rl (iΔT ), ψl (iΔT ), λl (iΔT )),

i ∈ {0, . . . , ntνs,k − 1}, k ∈ {0, . . . , nw − 1}, (3.43)

where
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Table 3.2 Parameters needed
to define the boundary
conditions for (3.13) for
k ∈ {0, . . . , nw − 1}

i = 0 rinit,k = rk(ntνs,kΔT ),

r̈init,k = r̈k(ntνs,kΔT ),

rend,k = r̂k+νs,k ,

r̈end,k = âk+νs,k

i ∈ {1, . . . , ntνs,k − 1} rinit,k = rk(iΔT ),

r̈init,k = r̈k(iΔT ),

rend,k = r̂k+νs,k ,

r̈end,k = âk+νs,k

�( jΔT, rk , ψk , λk) � g−1
barrier,k( jΔT )�̂( jΔT, rk , ψk , λk),

( j, rk , ψk , λk) ∈ {i, . . . , nt − 1} × R
3 × R × R

4,

(3.44)

gbarrier,k( jΔT ) =
[
φ2

max − φ2
k ( jΔT )

] [
θ2

max − θ2
k ( jΔT )

]
·

4∏
p=1

[
Tp,k( jΔT ) − Tmin

] 4∏
p=1

[
Tmax − Tp,k( jΔT )

]
, (3.45)

φmax ∈ (
0, π

2

)
and θmax ∈ (

0, π
2

)
are user-defined. The role of the penalty function

gbarrier,k(·) is that if φk( jΔT ) ∈ (−φmax, φmax), θk( jΔT ) ∈ (−θmax, θmax),
Tp,k( jΔT ) > Tmin, p = 1, . . . , 4, and Tp,k( jΔT ) < Tmax, then the model predictive
control algorithm underlying the proposed trajectory planning subsystem penalizes
all admissible solutions {rk( jΔT ), ψk( jΔT ), λk( jΔT )}ntνs,k

j=i , k ∈ {0, . . . , nw}, that

induce a decreasing subsequence of
{
gbarrier,k( jΔT )

}ntνs,k

j=i
. The second term on the

right-hand side of (3.43) includes a summation that recedes as the UAV approaches
ntΔT , and a fixed summation for path segments l > k.

It follows from (3.13), (3.17), and (3.21) that the UAV’s roll and pitch angles
are not part of the state vector χk(·), k ∈ {0, . . . , nw − 1}, and their dynamics are
unobservable in the measured output

[
rT

k (·), ψk(·)
]T

. Therefore, both φk( jΔT ), j ∈
{i, . . . , ntνs,k}, k ∈ {0, . . . , nw − 1}, and θk( jΔT ) are deduced from (3.9c) and (3.9d)
with control input given by (3.17) and λk( jΔT ) given by the model predictive control
law. It is also worthwhile to note that constraints on φk(·), k ∈ {0, . . . , nw − 1}, and
θk(·) are imposed through the barrier function gbarrier(·) Lagrangian function. Simi-
larly, it follows from (3.20), (3.23), and (3.8) that each propeller’s thrust force Tp,k(·)
is a nonlinear, time-varying function of λk(·) and hence, constraints on the positivity
of each propeller’s thrust force must be imposed through gbarrier(·). The user-defined
parameter Tmin > 0 captures the fact that the majority of commercial-off-the-shelf
motors and propellers for quadcopters do not allow to produce arbitrarily small
thrust force. The user-defined parameter Tmax > 0 captures the saturation constraint
for each propeller.
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3.4.7 Boundary Conditions

The boundary conditions on the UAV’s translational dynamic equations (3.13) or,
alternatively, (3.21) and (3.22), are given in Table 3.2. The conditions on the UAV’s
initial position and acceleration namely, rinit,k and r̈init,k , ensure that the UAV’s
reference position and acceleration are equal to the UAV’s position and acceler-
ation when the MPC algorithm is initialized, respectively. The conditions on the
UAV’s final position, namely, rend,k , ensures that the reference trajectory traverses the
waypoint r̂k+νs,k , k ∈ {0, . . . , nw − 1}. The condition on the UAV’s final acceleration
are defined so that

âk+νs,k � â
(
d2(r̂k+νs,k ,O)

)
d̂k, k ∈ {0, . . . , nw − 1}, (3.46)

where

â(α) �

⎧⎪⎨⎪⎩
0, if α ∈ [0, μ15],

μ17

μ16−μ15
(α − μ15), if α ∈ [μ15, μ16],

μ17, otherwise,

(3.47a)

d̂k � μ18
r̂k+νs,k − r̂k+νs,k−1

‖r̂k+νs,k − r̂k+νs,k−1‖ + (1 − μ18)
r̂k+νs,k+1 − r̂k+νs,k

‖r̂k+νs,k+1 − r̂k+νs,k ‖
, (3.47b)

and μ15, μ16, μ17 > 0 and μ18 ∈ [0, 1] are user-defined.
If d2(r̂k+νs,k ,O) ≤ μ15, k ∈ {0, . . . , nw − 1}, that is, if the UAV is sheltered by an

obstacle at a distance smaller than μ15, then ‖r̈end,k‖ = 0, since it is desirable for the
UAV not to accelerate while operating in safer areas. Alternatively, if d2(r̂k+νs,k ,O) >

μ16, k ∈ {0, . . . , nw − 1}, that is, if the UAV is too far from any obstacle to be con-
sidered sheltered, then ‖r̈end,k‖ = μ17, since it is desirable that the UAV rapidly tra-
verses unsafer areas. Finally, if d2(r̂k+νs,k ,O) ∈ [μ15, μ16], k ∈ {0, . . . , nw − 1}, then
‖r̈end,k‖ is set to increase as a linear function of d2(r̂k+νs,k ,O) from 0 to μ17. If μ18 = 1,
then r̈end,k , k ∈ {0, . . . , nw − 1}, is set to point in the direction joining the waypoint
r̂k+νs,k , which is set as the endpoint for the trajectory, and r̂k+νs,k−1. Alternatively, if
μ18 = 0, then r̈end,k , k ∈ {0, . . . , nw − 1}, is set to point in the direction joining the
waypoint r̂k+νs,k , which is set as the endpoint for the trajectory, and r̂k+νs,k+1. Setting
μ18 = 1 allows to align the endpoint condition on the acceleration with the direction
the reference trajectory would follow by interpolating all waypoints, that is, by set-
ting νs,k = 1. This option may induce overly aggressive maneuvers in the presence
of sharp turns in the reference path. Setting μ18 = 0 allows to align the endpoint con-
dition on the acceleration with the direction the reference trajectory would follow
by interpolating all waypoints after r̂k+νs,k has been reached. This option may induce
less aggressive maneuvers in the presence of sharp turns in the reference path.

For brevity, Table 3.2 does not include the initial conditions at the beginning of
the mission and the endpoint conditions at the end of the mission. In this study, the
UAV is designed to start and end its mission with zero acceleration.
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3.4.8 Numerical Solution of the Trajectory Planning Problem

In this chapter, the pair (χk( jΔT ), λk( jΔT )) is computed for each j ∈ {i, . . . , nt −
1}, i ∈ {0, . . . , nt − 1}, and for all k ∈ {0, . . . , nw − 1}, as minimizers of the cost
function (3.43) subject to (3.22), (3.24), and (3.35) by applying the framework pre-
sented in [2]. A difference with the work presented in [2] is that in this work, the cost
function underlying the trajectory planner is a function of time, since the roll angle
φk(·), k ∈ {0, . . . , nw − 1}, the pitch angle θk(·), and the thrust force produced by
the pth propeller Tp,k(·), p = 1, . . . , 4, are not a part of the state vector χk(·). Thus,
the quadratic programming algorithm used to solve the trajectory planning problem
needs to be updated at each time step.

3.5 Numerical Simulations Results

In this section, we present and analyze the results from two hardware-in-the-loop
simulations aimed at showing the features and the applicability of the proposed
guidance system. In particular, Sect. 3.5.1 below shows the results of the proposed
system while requiring a reckless trajectory to be followed. Successively, Sect. 3.5.2
shows the results of the proposed system while requiring a tactical trajectory to be
followed. The results of the simulations discussed in the following as well as the
optimization framework presented thus far can be also found at [31].

3.5.1 Reckless Guidance System Simulation

The results from the first simulation, in which the guidance system’s parameters
are set to instill a reckless behavior, are shown in Fig. 3.18. Solid black lines indi-
cate the boundaries of obstacles, the green star indicates the UAV’s initial position
r0(0) = [1.0, 1.0, 1.0]T m, the red line indicates the UAV’s position rk(iΔT ), the
blue, purple, and green arrows indicate the orientation of the UAV’s roll, pitch, and
yaw axes, respectively. The pink and yellow contour plot represents the projection
of the explored set Vexplored onto the horizontal plane. Yellow shades indicate that
a large percentage of voxels have been detected by the simulated camera, whereas
pink shades indicate that a small percentage of voxels have been detected by the
simulated camera.

At the beginning of the mission, the simulated camera gathers information for
Algorithm 3.1, which generates the first goal point r̂P̃,0 = [4.6, 1.6, 1.8]T m, a refer-
ence path and a reference trajectory are outlined, while avoiding the detected obsta-
cles. Once the UAV rounds the corner near [7.0, 5.0, 1.0]T m, the first goal is detected
at t = 19.86 s, triggering Algorithm 3.1 to execute and create a new goal point. This
process is iterated 8 times when the final goal point r̂P̃,8 = [13.8, 3.8, 1.0]T m was
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Fig. 3.18 Results from a flight simulation with a reckless parameter set. Solid black lines indicate
the boundaries of obstacles, the green star indicates the UAV’s start point r0(0), the red line indicates
the UAV’s trajectory, the blue star indicates the UAV’s final goal point r̂P̃,8. The filled contour plot
indicates the sum of the explored voxels at that a given location in the horizontal plane. Bright yellow
indicates that every voxel has been detected by the simulated camera, and bright pink indicates that
no voxel has been detected by the simulated camera. The coverage mission is completed in 262.70 s
after having explored 97.17% of the total number of voxels. On average, 1028 voxels per second
are explored, which corresponds to 0.34% of the total number of voxels per second

detected at t = 262.70 s, and the mission is completed after having explored 97.17%
of the total number of voxels. On average, 538.30 voxels per second are explored,
which corresponds to 0.18% of the total number of voxels per second.

It is apparent how the UAV’s trajectory traverses the open areas, and, hence,
exposes the vehicle to potential threats. The average distance from the obstacles’ set
is 1.97 m, and the standard deviation of the distance from the obstacles’ set is 1.22 m.
The distance traveled by the UAV is 95.717 m, approximately 10 times the distance
between r0(0) and r̂P̃,12. The average flight speed of 0.40 m

s with a standard deviation
of 0.51 m

s . The vehicle’s maximum pitch angle θk(·) and maximum roll angle φk(·)
were 8.39◦ and 8.82◦, respectively, satisfying the constraints imposed by (3.45).
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Fig. 3.19 Results from a flight simulation with a tactical parameter set. The coverage mission is
completed in 216.12 s after having explored 96.65% of the total number of voxels. On average,
383.00 voxels per second are explored, which corresponds to 0.11% of the total number of voxels
per second

3.5.2 Tactical Guidance System Simulation

The results from the second simulation, in which the guidance system’s parameters
are set to instill a tactical behavior, are shown in Fig. 3.19. As for the first simu-
lation, the UAV starts at r0(0) = [1.0, 1.0, 1.0]T m. Once the simulation starts, the
simulated camera gathers information for Algorithm 3.1, which determines the first
goal point r̂P̃,0 = [15.0, 5.0, 4.6]T m. The first goal point is on the second floor, and,
due to the unknown nature of the environment, the tactical path aims to intersect
the ceiling of the first floor. As the vehicle follows the path, the ceiling’s occupied
voxels are detected, and the collision avoidance algorithm inhibits the vehicle from
traveling any further. Thus, the UAV generates a new path, and, eventually, the stair-
case is discovered and used to reach the second floor. Once the vehicle reaches the
second floor, the planned path coasts the walls nearby as it approaches the goal,
enabling a tactical behavior. When the UAV rounds the corner of the obstacle near
[10.0, 5.0, 1.0]T m, the first goal point r̂P̃,0 = [8.6, 5.4, 0.6]T m is detected by the
simulated camera at t = 34.80 s, triggering Algorithm 3.1 to execute and create a
new goal point. By the end of the simulation, 13 goal points are generated. The
final goal point, namely, r̂P̃,12 = [14.6, 16.0, 5.0]T m, is generated at t = 301.47 s,
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and detected at t = 308.93 s. The percentage of the map explored is 96.51%, with
approximately 3.30% being undetectable by the simulated camera sensor. The num-
ber of voxels explored per second is 383.00, which is approximately 0.11% of the
total number of voxels in the map.

Observing Fig. 3.19, it is apparent how the UAV’s trajectory exploits the obstacles’
set to seek shelter and reduce its exposure. An animation of this trajectory shows
how the UAV travels more rapidly across areas away from the obstacles’ set. The
average distance from the obstacles’ set is 1.22 m, which is 0.75 m less than the
average distance from the obstacles’ set obtained in the reckless simulation, and
the standard deviation of the distance from the obstacles’ set is 1.01 m. The tactical
guidance system enabled the vehicle to exploit shelter in areas that are not densely
packed with obstacles. The distance traveled by the UAV is 244.05 m, which is
148.33 m longer than the distance traveled by the UAV with a reckless behavior. This
distance is approximately 11 times the distance between r0(0) and r̂P̃,12. The flight
time is 216.12 s, 66.02 s longer than the reckless counterpart. This flight time yields
an average flight speed of 0.28 m

s with a standard deviation of 0.38 m
s . The lower

average flight speed can be attributed to the fact that, while coasting obstacles, the
UAV is programmed to fly at a lower speed. The vehicle’s maximum pitch angle
θk(·) and maximum roll angle φk(·) are 8.60◦ and 8.42◦, respectively, satisfying the
constraints imposed by (3.45).

3.6 Conclusion and Future Work

This chapter presented the first guidance system for autonomous multi-rotor UAVs
employed to cover unknown areas while implementing several tactics to minimize
the risk of exposure to unknown, potential threats. These tactics include exploring
obstacles to seek shelter, proceeding more slowly in safer areas, such as in proximity
of obstacles, and accelerating, while traversing more hazardous areas. The extent
these strategies need to be pursued can be tuned by user-defined parameters.

This guidance system comprises an optimization-based path planner that is suit-
able for cluttered, dynamic environments. An original goal selection algorithm allows
the proposed path planner to prioritize the need for a systematic coverage or the need
for covering largely unexplored, according to the user’s preference. The proposed
guidance system also includes an optimal control-based trajectory planner that inter-
polates the waypoints produced by the path planner, while accounting for the UAV’s
nonlinear dynamics. User-defined constraints on the maximum pitch, roll, and yaw
angles are imposed by means of inequality constraints and barrier functions. This tra-
jectory planner also allows the user to choose how closely the reference path needs to
be followed. Thus, the proposed guidance system allows the user to request reckless
reference paths, which guarantee shorter distances and flight times, and reference
trajectories that, while not following the reference path too closely, guarantee suf-
ficiently high levels of cautiousness. An original algorithm, named the bubble bath
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algorithm, allows to define convex constraint sets in voxel maps, which define the
search space for the trajectory planner.

In the near term, future work directions include verifying the computational advan-
tage of the proposed path planner, which is based on the L P A∗ algorithm over alter-
native search algorithms such as A∗. Additionally, the performance of the proposed
Bubble Bath algorithm will be tested against state-of-the-art algorithms such as IRIS
(Iterative Regional Inflation by Semidefinite programming) [26–28] and SFC (Safe
Flight Corridors) [29]. Finally, flight tests will validate the proposed numerical sim-
ulation results.

A key point in the proposed guidance system revolves around optimal trajectory
planning, which, after having feedback-linearized the UAV’s equations of motion,
has been cast as a linear–quadratic optimization problem to produce solutions in real
time. The next chapter discusses an alternative approach to the optimal trajectory
planning problem, which allows to account for nonlinear differential equations in
the trajectory planning process.
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