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MRAC With Adaptive Uncertainty Bounds via
Operator-Valued Reproducing Kernels

Haoran Wang , Brian Scurlock, Nathan Powell, Andrea L’Afflitto , Senior Member, IEEE ,
and Andrew J. Kurdila

Abstract—This letter presents three novel model refer-
ence adaptive control (MRAC) systems for nonlinear plants
in which the matched, nonparametric uncertainty is only
known to reside in a vector-valued reproducing kernel
Hilbert space (RKHS). The first MRAC system is based on
an extension of the classical projection operator for robust
MRAC systems and assures ultimate boundedness of the
trajectory tracking error. This MRAC system allows the user
to design part of the control input, known as the com-
pensator. The second MRAC method modifies the previous
one and, based on an estimate of the largest admissible
uncertainty in the RKHS norm, employs a particular choice
of the compensator to assure asymptotic convergence of
the tracking error to zero. The last MRAC method uses the
previous one and, leveraging the error bounding method
framework, employs an additional learning law to assure
asymptotic convergence of the tracking error without any
information on the largest admissible uncertainty. While the
conventional approaches to adaptive error bounding meth-
ods usually leave it to an analyst to derive the required error
bounds on a case-by-case basis, the proposed approaches
work for any functional uncertainty that is contained in any
native space of vector-valued functions defined in terms of
an operator kernel.

Index Terms—Model reference adaptive control, repro-
ducing kernel Hilbert spaces, non-parametric uncertainties.

I. INTRODUCTION

A. Motivation and Relevance of the Proposed Work

IN CLASSICAL MRAC systems, nonlinear matched uncer-
tainties are parameterized by an unknown matrix and a

known regressor vector that is designed using some prior
information about the plant dynamics or using some neural
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network or other learning mechanisms. In practice, these
approaches are valid under the so-called uniform approxi-
mation assumption, which ensures the parameterization of
the functional uncertainty is accurate [1], [2]. A plethora
of publications assume the existence of a regressor vector
and, more or less tacitly, considers the uniform approxima-
tion assumption as verified. Although the use of regressor
vectors to span nonlinearities can be interpreted as a way
to capture functional uncertainties, the ability to accurately
capture uncertainties is limited by the richness of the regressor
vector. Ultimately, these techniques are still mostly examples
of a parametric adaptive control theory since the analysis of
stability and convergence is performed for a fixed number of
real parameters that are used to characterize the uncertainty.

This letter breaks away from employing some of the more
common forms of the uniform approximation assumption,
and obtains explicit, sharper controller performance bounds.
These bounds are based on error characterizations that apply
when the matched functional uncertainty lies in an infinite-
dimensional reproducing kernel Hilbert space (RKHS) defined
by an operator kernel. In particular, this letter proposes three
MRAC systems of increasing complexity and performance
level. The first result, which is summarized in Theorem 1,
extends the continuous convex projection operator for classical
MRAC systems to plants affected by uncertainties that lie
in RKHSs. This result allows the user to choose, within
some mild assumptions, a control term dubbed the compen-
sator, which guarantees uniform boundedness of the trajectory
tracking error and the adaptive gains and uniform ultimate
boundedness of the trajectory tracking error. The second
original result of this letter, given by Theorem 2, chooses a
specific form for the compensator, which enforces uniform
asymptotic convergence of the trajectory tracking error to zero,
provided that the largest upper bound on the tracking error is
known in the RKHS norm. Finally, introducing an additional
adaptive law the final result of this letter, namely Theorem 3,
proves uniform asymptotic convergence of the tracking error
without requiring any knowledge of the largest admissible
functional uncertainty.

The proposed results all can be understood as approxima-
tions of the same adaptive control law and the same adaptive
law defined in terms of a partial differential equation (PDE).
The PDE evolves in an infinite-dimensional RKHS and, its
associated adaptive controllers are not implementable in prac-
tice. Therefore, this infinite-dimensional architecture, whose
adaptive laws form a limiting distributed parameter system
(DPS), is projected onto some user-defined space of functional
uncertainties of dimension N. To our knowledge for nonlinear
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ODEs, only the adaptive control systems in [3], [4], [5] have
been interpreted similarly. Some features of this strategy
have also appeared in other references on RKHS methods
in adaptive control, including notably [6], [7] and subsequent
efforts that cite them.

This letter contributes to the ongoing goal suggested in
research like that above of developing a nonparametric adap-
tive control theory that

(1) is well-defined for the vast collection of RKHS that are
generated by operator-valued kernels;

(2) yields closed-form ultimate performance bounds on
the tracking error that are explicit in N and hold for all
the coordinate-centric implementations bundled together as N
increases; and

(3) derive guarantees of performance over nonparametric
uncertainty classes in the native space. In contrast to [3], [6],
the proposed approach only uses deterministic Lyapunov
analyses for the implementable controllers, which are the basis
of classical texts such as [1], [2], [8], [9], [10]. While the
development of additional stochastic elements of the approach
in this letter would be beneficial, such as in the use of Gaussian
process results in [3], here we restrict to the deterministic
setting owing to the brevity of this letter.

This letter is inspired by the error bounding adaptive control
strategies in Euclidean space presented in [2]. However,
while the approach as summarized in [2] leaves it to the
designer to find an error bounding function using case-by-
case considerations, this letter derives and uses a general
error bounding function that works whenever the functional
uncertainty is contained in a vector-valued RKHS.

B. Problem Statement
In this letter, we consider the plant model given by the set

of autonomous ordinary differential equations (ODEs)

ẋ(t) = Ax(t) + B(u(t) + f (x(t))), x(t0) = x0, t ≥ t0, (1)

where x : [t0,∞) → X denotes the plant trajectory, X = R
n,

u : [t0,∞) → U denotes the control input, U = R
m, A ∈ R

n×n

is unknown, B ∈ R
n×m is known and such that the pair (A, B)

is controllable, and f : X → U is unknown and assumed to
be contained in the RKHS H � span{Kxα |α ∈ U, x ∈ X} of
U-valued functions over X, where Kx(·) � K(·, x) is known
as the kernel function centered at x, K : X × X → L(U) is
known as operator kernel, L(U) denotes the space of bounded
linear operators on U, and the closure is taken with respect to
the candidate inner product 〈Kx(·),Ky(·)〉H for all x, y ∈ X;
see [11], [12] for an axiomatic description of the closed linear
span. Our goal is to design an adaptive control system so that
limt→∞ ‖x(t) − xr(t)‖ = 0 uniformly in t0 ≥ 0, where the
reference trajectory xr : [t0,∞) → R

n is the trajectory of the
reference model

ẋr(t) = Arxr(t) + Brr(t), xr(t0) = xr,0, t ≥ t0, (2)

Ar ∈ R
n×n is Hurwitz, Br ∈ R

n×m, the pair (Ar, Br) is
controllable, and the reference command input r : [t0,∞) → U

is continous and bounded. To assure the existence of a control
law that allows the plant trajectory to follow the reference
trajectory, we assume that there exist α ∈ R

n×m and β ∈ R
m×m

such that the matching conditions

Ar = A + BαT, Br = BβT, (3)

are verified. The matching conditions signify that there exists
at least a control input so that the plant can follow the reference
model [1]. If the plant is not structured to follow the reference
model, as it would occur for a car tasked with mimicking some
aircraft dynamics, the matching conditions are not verified.

II. FUNDAMENTALS OF OPERATOR-VALUED KERNELS

In this section, we present a succinct compendium of RKHS
theory needed for the scope of this letter. For more details,
see [12, Ch. 6], [13]. The operator-valued reproducing kernel
in this letter is a mapping K : X × X → L(U) that takes
values in the bounded linear operators on U. On first reading,
it can be useful to assume that the vector-valued native space
is determined by K(x1, x2) � K(x1, x2)Im, where Im is the
identity matrix and K : X × X → R is a scalar-valued
kernel that defines a native space of scalar-valued functions
over X [11], [14]. Among classical scalar-valued kernels, we
recall the Gaussian, inverse multiquadric, Sobolev-Matern, and
Wendland kernels [15]. In this letter, we refer to vector-valued
native space for “native space of vector-valued functions” and,
similarly, for scalar-valued native spaces.

A. Some Critical Identities
For all x ∈ X, α ∈ U, and h ∈ H, it holds that

〈Kxα, h〉H = 〈α, Exh〉U = 〈α, h(x)〉U = αTh(x), (4)

where the evaluation operator Ex : h ∈ H 
→ h(x) ∈ U is
bounded and linear for each x ∈ X and such that Ex = (Kx)

∗ �
K∗

x for each x ∈ X, and (·)∗ denotes the adjoint operator the
is defined with respect to H and R.

For all x, z ∈ X, it holds that

K(z, x) = EzK(·, x) = EzKx = K∗
zKx = EzE

∗
x . (5)

Both (4) and (5) are of paramount importance in this letter
for showing the relationship between the kernel function,
evaluation operator, and inner products on U and H.

B. Approximation in Vector-Valued Native Spaces
In this letter, control schemes are realized on specific types

of approximations of infinite-dimensional RKHSs that are
defined in terms of scattered bases [12], [15]. To this goal, we
define the set of centers �N � {ξi ∈ X | 1 ≤ i ≤ N}. We
suppose that the collection of all centers � �

⋃∞
N=N0

�N is

dense in a compact set of interest � ⊆ ⋃
N≥0 �N ⊂ X; such

a set contains the plant’s controlled trajectory.
We assume that each operator kernel K is strictly positive

definite, that is, the generalized Grammian matrix KN �
[K(ξi, ξj)](i,j) ∈ R

mN×mN is positive definite for any choice of
N distinct centers in �N , where [ · ](i,j) denotes the element
on the i-th row and j-th column of its matrix argument. This
assumption on the Grammian matrix is not overly restrictive in
our applications. For instance, it is verified whenever K(·, ·) �
ImK(·, ·) and K is one of the scalar-valued kernels mentioned
above. This assumption ensures that the family of functions
{Kξi e

j | 1 ≤ i ≤ N, 1 ≤ j ≤ m} is linearly independent and
constitutes a basis for HN , where {ej}m

j=1 denotes the set of
canonical basis vectors for U. Note that the number of real
parameters p � dim(HN) = mN is the dimension of the space
of approximants when using N centers for approximation.

To produce adaptive laws in finite-dimensional spaces, we
introduce the space of approximants
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HN � span
{Kξi e

j | ξi ∈ �N, 1 ≤ i ≤ N, 1 ≤ j ≤ m
}
. (6)

Thus, we define �N : H → HN as the H-orthogonal projec-
tion onto HN ⊆ H, and we use �N to build approximations of
infinite-dimensional representations of functional uncertainties
as well as control and adaptive laws designed based on infinite-
dimensional terms.

The accuracy of approximations in a RKHS can be captured
by the power function [15]. In this letter, we define the vector-
valued power function of the subspace HN ⊆ H in the
direction α ∈ U as

Pα
N(x) �

√〈(K(x, x) − KN(x, x))α, α〉U (7)

for all x ∈ X, where KN(·, ·) denotes the known operator
kernel that defines HN ; for details, see [16]. This is a
generalization of the power function for scalar-valued native
spaces [15], [17], and it enables an error bound in the vector-
valued native space. Specifically, according to Corollary 2.11
of [16], for each x ∈ X, α ∈ U, h ∈ H, it holds that

|〈Ex(I − �N)h, α〉U| ≤ Pα
N(x)‖(I − �N)h‖H

≤ Pα
N(x)‖h‖H. (8)

If H = Hm, that is, if the vector-valued RKHS is given as the
Cartesian product of a scalar-valued RKHS N times, then

‖Ex(I − �N)f ‖H ≤ PN(x)‖f ‖H, x ∈ X, (9)

where

PN(x) �
√
K(x, x) − KN(x, x) (10)

denotes the power function of the scalar-valued native space
H and K(·, ·) denotes the kernel function underlying H.

III. ROBUST MRAC IN A NATIVE SPACE

A. General Framework
To steer the trajectories of (1) toward the trajectories of (2),

in this letter, we employ the control input

uN(t) = α̂T
N(t)xN(t) + β̂T

N(t)r(t)

− ExN (t)

(
f̂N(t, ·) + cN(·, eN(t))

)
, t ≥ t0, (11)

where the matrix adaptive gains α̂ : [t0,∞) → R
n×m and

β̂ : [t0,∞) → R
m×m verify the adaptive laws

˙̂αN(t) =
{

proj
(
α̂N(t),−�αxN(t)eT

N(t)PB
)
,

−dead
(
�αxN(t)eT

N(t)PB
)
,

α̂(t0) = α̂0, (12)

˙̂
βN(t) =

{
proj

(
β̂N(t),−�βr(t)eT

N(t)PB
)
,

−dead
(
�βr(t)eT

N(t)PB
)
,

β̂(t0) = β̂0, (13)

the adaptive rate matrices �α ∈ R
n×n and �α ∈ R

m×m are
symmetric and positive-definite, P ∈ R

n×n denotes the sym-
metric, positive-definite solution of the algebraic Lyapunov
equation AT

r P + PAr = −Q, Q ∈ R
n×n is user-defined,

symmetric, and positive-definite, the functional adaptive gain
f̂N(·, ·) ∈ HN verifies the adaptive law

∂ f̂N(t, ·)
∂t

=
⎧
⎨

⎩

Proj
(

f̂N(t, ·),�N�f E∗
xN (t)B

TPeN(t)
)
,

dead
(
�N�f E∗

xN (t)B
TPeN(t)

)
,

f̂ (t0, ·) = f̂0, (14)

the adaptive rate matrix �f ∈ R
m×m is symmetric and

positive-definite, xN : [t0,∞) → X denotes the solution
of (1) with control input (11), eN(t) � xN(t) − xr(t), and the
compensator cN : X×R

n → U is user-defined. Note that (14) is
a partial differential equation taking values in H. This equation
can be viewed as an approximation of the adaptive law in the
limiting system discussed in Section III-B below.

Let D ⊆ R
m be convex and let h : D → R be convex and

such that infθ∈D h(θ) < 0. The continuous vector projection
operator is defined as

proj(θ, θd) �

⎧
⎨

⎩

P(θ, θd) if h(θ) > 0,

and
〈
h′(θ), θd

〉
Rd > 0,

θd otherwise,
(15)

where

P(θ, θd) � θd − h(θ)

(
∂h(θ)

∂θ

)T(
∂h(θ)

∂θ

)∥
∥
∥
∥
∂h(θ)

∂θ

∥
∥
∥
∥

2

θd (16)

for all (θ, θd) ∈ D × R
m. Applying the vector projection

operator to each column of matrices 
,
d ∈ R
m×N , we obtain

the continous matrix projection operator employed in (12)
and (13); we employ the same symbol for both operators.

Let D ⊆ H be convex, and h : D → R be convex,
Fréchet differentiable, and so that inff ∈D h(f ) < 0. The Fréchet
derivative of h ∈ H at f ∈ H is denoted by Dh(f ). Define the
convex projection operator over H P : D × H → H as

Proj(f , fd) �
{
P(f , fd) if h(f ) > 0,

and 〈Dh(f ), fd〉H > 0,
fd otherwise,

(17)

where

P(f , fd) �
[

I − h(f )

(

·, Dh(f )

‖Dh(f )‖H
)

H
Dh(f )

‖Dh(f )‖H
]

fd (18)

for all (f , fd) ∈ D × H. We purposely employed the same
symbol in (16) and (18) to remark on their analogies. The
deadzone operator dead : Y → Y used in (12) and (13), where
Y = R

n×m in (12) and Y = R
m×m in (13), and dead : RN×n →

R
N×n used in (14) is defined in [1, p. 319]. The adaptive laws

in (12)–(14) are mutually exclusive.
Theorem 1: Suppose that H � Hm. Assume that the

DPS given by (1) with control input (11) and adap-
tive laws (12)–(14) have complete solutions on [t0,∞).
Furthermore, suppose that the compensator cN(·, ·) is such that〈
ExN (t)cN(·, eN(t)), BTPeN(t)

〉
Rm ≤ 0 for all t ≥ t0. Then, the

trajectories of the DPS are uniformly bounded in X×R
n×m ×

R
m×m × HN . Additionally, for any arbitrarily small constant

η > 0, there exists T � T(η) > t0 such that ‖eN(t)‖X ≤ S for
all t ≥ T , where

S � (1 + η)
2‖BTP‖
λmin(Q)

εN sup
ξ∈�

PN(ξ), (19)

εN � supx∈� ‖Ex(I − �Nf ))‖H, and � ⊂ X is compact and
such that xN(t) ∈ � for all t ≥ t0.

Proof: For brevity, we prove the result using employing
the projection operators in (12)–(14). Employing the deadzone
operator, the proof follows identically. Let

V
(

eN, α̃N, β̃N, f̃N
)
� 〈PeN, eN〉Rn +

〈
f̃N, �−1

f f̃N
〉

H
+

〈
α̃N(t), �−1

α α̃N

〉

tr
+ �−1

β

〈
β̃N, �−1

β β̃N

〉

tr
, (20)
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where α̃N(t) � α̂N(t) − α, t ≥ t0, β̃N(t) � β̂N(t) − β, and
f̃N(t, ·) � f − f̂N(t, ·). Thus, taking the derivative of (20) along
the trajectories of (1) with control input (11) and (12)–(14),
we obtain that, for all t ≥ t0,

V̇(t) = −〈eN(t), QeN(t)〉Rn
︸ ︷︷ ︸

Term 0

−2
〈
α̃N(t), xN(t)eT

N(t)PB + �−1
α

˙̂αN(t)
〉

tr︸ ︷︷ ︸
Term 1

−2
〈
β̃N(t), r(t)eT

N(t)PB + �−1
β

˙̂
βN(t)

〉

tr︸ ︷︷ ︸
Term 2

+2
〈
f̃N(t, ·),�NE∗

xN (t)B
TPeN(t) + �−1

f
˙̂fN(t, ·)

〉

H︸ ︷︷ ︸
Term 3

+ 2
〈
ExN (t)(I − �N)f , BTPeN(t)

〉
U︸ ︷︷ ︸

Term 4

+ 2
〈
ExN (t)cN(·, eN(t)), BTPeN(t)

〉
U︸ ︷︷ ︸

Term 5

, (21)

with V(t) = V(eN(t), α̃N(t), β̃N(t), f̃N(t, ·)) for brevity. Note
that Term 3 in (21) is obtained passing the time derivative
through the inner product on H. This is possible owing
to the fact that f̃N(t, ·) = f − f̂N(t, ·), f is not a func-
tion of time, and f̂N(t, ·) is finite-dimensional, and, hence〈
f̃N(t, ·), �−1

f f̃N(t, ·)
〉

H can be expanded along each compo-
nent of HN , the limit of the underlying incremental ratio
can be taken component-wise, and −

〈˙̂fN(t, ·), �−1
f f̃N(t, ·)

〉

H −
〈
f̃N(t, ·), �−1

f
˙̂fN(t, ·)

〉

H is obtained. Applying [1, Lemma 11.3],
we deduce that Terms 1 and 2 are nonpositive for all t ≥ t0.
Furthermore, for all t ≥ t0, it holds that

Term 3 = 2

〈

�Nf − f̂N(t, ·),

�NE∗
xN (t)B

TPeN(t) − Proj
(

f̂N(t),�N�f E∗
xN (t)B

TPe(t)
)〉

H
.

Now, let δ ∈ (−∞, 1] and 
δ � {f ∈ D : ‖�Nf ‖H < δ}. If
f ∈ 
δ , then �Nf ∈ 
δ . Thus, it follows from Theorem 4 in
the Appendix that Term 3 in (21) is nonpositive.

By assumption, Term 5 is nonpositive. Finally, recalling that
HN can be expressed as the Cartesian product of scalar-valued
RKHS, it follows from (4) and (9) that

Terms 0 &4

= −〈eN(t), QeN(t)〉Rn + 2
〈
ExN (t)(I − �N)f , BTPeN(t)

〉
U

= −〈eN(t), QeN(t)〉Rn

+ 2
〈
f̃N(t, ·), (I − �N)E∗

xN (t)B
TPeN(t)

〉

H
≤ −λmin(Q)‖eN(t)‖

·
(

‖eN(t)‖ − 2‖BTP‖
λmin(Q)

‖εN‖H sup
x∈�

PN(x)

)

(22)

for all t ≥ t0, where � ⊂ X is a compact set such that x(t) ∈ �
at all times.

Theorem 1 proves that, given a compensator cN(·, ·) such
that

〈
ExN (t)cN(·, eN(t)), BTPeN(t)

〉
U

≤ 0 for all t ≥ t0, the
trajectory tracking error is uniformly ultimately bounded. Note

that if we define an uncertainty class CR � {f ∈ H | ‖(I −
�N)f ‖H ≤ ‖f ‖H ≤ R}, then the above proof can be used
to define a performance bound that holds over all functions
f ∈ CR, which is an infinite dimensional functional uncertainty
class contained in H. This theorem, though generic, relies on
the user’s ability to design cN(·, ·); this limitation will be lifted
in the following.

Theorem 1 leverages the existence of a compact set � ⊂ X

such that xN(t) ∈ � for all t ≥ t0. A way to construct the set �
can be the following. From the proof of Theorem 1, we deduce
that V̇(t) ≤ 0 for all t ∈ [t0, T(η)). Thus, we consider the level
set {z ∈ Z : V(z) ≤ V(z0)}, where z � (eN, α̃, β̃, f̃ ) and Z �
R

n×R
n×m×R

m×m×HN . Since this level set can expressed as
a Cartesian product of sets, whose finite-dimensional elements
are compact, we can deduce a compact set E ⊂ R

n such that
eN(t) ∈ E for all t ≥ t0. Finally, since xr(t) is bounded for
all t ≥ t0 due to the boundedness of r(t) and the Hurwitz
nature of Ar, we can choose � = ⋃

t≥t0{E + xr(t)}. This
approach may lead to conservative results. The results in the
next section relieve the user from such a procedure.

Remark 1: Theorem 1 holds for H = Hm. If H
is instead induced by general the operator-valued kernel
K(·, ·), then (19) holds replacing supξ∈� PN(ξ) with
supx∈�

√‖K(x, x) − KN(x, x)‖. For brevity, we do not include
this proof; see Section II-B.

B. The Limiting DPS
If, instead of (14), we employed an adaptive law that does

not include any approximation due to the projection �N , such
as

∂ f̂ (t, ·)
∂t

= −�f E∗
x(t)B

TPe(t), f̂ (t0, ·) = f̂0, t ≥ t0, (23)

then we would obtain the adaptive gain f̂ (t, ·) ∈ H instead
of f̂N(t, ·) ∈ HN ⊆ H. This equation is a PDE. Furthermore,
the adaptive gain f̂ (t, ·) would match the vector-valued RKHS
H for all t ≥ t0, and would not be guaranteed to lie in
some finite-dimensional space. If H is infinite-dimensional,
then such adaptive gain would not be implementable in
practice. The orthonormal projection �N in (14) allows us to
produce adaptive gains that reside in the user-defined finite-
dimensional RKHS HN designed to approximate H. Applying
Gronwall’s inequality, it can be shown that, for each t ∈ [t0, T),
limN→∞ f̂N(t, ·) = f̂ (t, ·) [18]. The DPS given by (1) with
control input (11) and adaptive laws (12), (13), and (23) is
called the limiting DPS.

C. Error Bounding Adaptive Control
To present the results of this section, it is worthwhile noting

that if α = ei, then for all x ∈ X, (8) reduces to
∣
∣
〈
Ex(I − �N)f , ei〉

R

∣
∣ = ∣

∣Ex((I − �N)f )i

∣
∣

≤ Pei

N (x)‖(I − �N)f ‖H ≤ Pei

N (x)‖f ‖H,

where (·)i denotes the i-th component of its argument and ei

denotes the i-th element of the canonical basis in U. Now, it
follows from (7) that

∣
∣Ex((I − �N)f )i

∣
∣ ≤ √

�KN,ii(x, x)‖(I − �N)f ‖H, (24)

where �KN,ii(x, x) � [K(x, x)](i,i) − [KN(x, x)](i,i). Let

�KN(x, x) �
[
�KN,11(x, x), . . . ,�KN,mm(x, x)

]T ∈ U,
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and define the compensator vN : X × R
n → U whose i-th

component is

vN,i(x, eN) � −sign
(
BTPe

)
i

√
�KN,ii(x, x)‖f ‖H, (25)

for i = 1, . . . , m, where sign : R → {−1, 0, 1} denotes the
signum function. Finally, we consider the control input (11)
with ExN (t)cN(·, eN(t)) = vN(x(t), eN(t)) for all t ≥ t0. The
next result characterizes the performance of this control input
and of the adaptive laws (12)–(14).

Theorem 2: Assume that the DPS given by (1) with con-
trol input (11) and adaptive laws (12)–(14) have complete
solutions on [t0,∞). Furthermore, let ExN (t)cN(·, eN(t)) =
vN(xN(t), eN(t)), where vN,i(·, ·) is given by (25). Then, the
trajectories of the DPS are uniformly bounded in X×R

n×m ×
R

m×m × H, and limt→∞ ‖xN(t) − xr(t)‖X = 0 uniformly in
t0 ≥ 0.

Proof: By proceeding as in Theorem 1, we obtain that

V̇(t) ≤ −〈eN(t), QeN(t)〉Rn

+ 2
〈
ExN (t)(I − �N)f + vN(xN(t), eN(t)), BTPeN(t)

〉
U

(26)

for all t ≥ t0. Expanding the second term on the right-hand
side of (26), we obtain that
〈
ExN (t)(I − �N)f + vN(xN(t), eN(t)), BTPeN(t)

〉
U

=
m∑

i=1

(
BT

PeN(t)
)

i

(
ExN (t)((I − �N)f )i + (vN(xN(t), eN(t))i)

=
m∑

i=1

∣
∣(BTPeN(t))i

∣
∣
(

sign(BTPeN(t))iExN (t)((I − �N)f )i

− √
Kii(xN(t), xN(t)) − KN,ii(xN(t), xN(t))‖f ‖H

)

≤ 0,

by virtue of the entry-wise bound in (24). The result now
follows by applying Barbalat’s lemma.

Theorem 2 provides a stronger result than Theorem 1
because it guarantees asymptotic convergence to zero of the
trajectory tracking error. A challenge in the implementation
of (25) lies in the need to know ‖f ‖H or an upper bound
thereof. This problem is addressed in Section III-D below. An
additional challenge in the application of Theorem 2 lies in
the discontinuities due to the signum function in (25). Thus,
the implementation of the control input (11) with compensator
ExN (t)cN(·, eN(t)) = vN(x(t), eN(t)), t ≥ t0, may induce
chattering. Future work directions involve the use of higher-
order structures that, similarly to higher-order sliding mode
control, will ease the implementation of this result.

D. Adaptive Upper Error Bounding Control
In this section, we introduce an additional adaptive mecha-

nism that allows us to overcome the need to estimate ‖f ‖H. To
this goal, we consider the compensator vN : X×R

n ×R → U,
with i-th component

vN,i(xN, e, λ̂N) � −sign
(
BTPe

)
i

√
�KN,ii(xN, xN)λ̂N, (27)

where λ̂N : [t0,∞) → R verifies

˙̂
λN(t) = −�λ

m∑

i=1

√
�KN,ii(xN(t), xN(t))|(BTPeN(t)

)
i|,

λ̂N(t0) = λ̂N,0, t ≥ t0, (28)

and �λ > 0 denotes an adaptive rate. We employ the same
notation for the compensator in (25) and (27) to remark on

their tight relationship. Indeed, if λ̂N = ‖f ‖H, then (27) is
equivalent to (25).

Theorem 3: Assume that the DPS given by (1) with control
input (11) and adaptive laws (12)–(14), and (28) have complete
solutions on [t0,∞). Furthermore, let ExN (t)cN(·, eN(t)) =
vN(xN(t), eN(t), λ̂N(t)), where vN,i(·, ·, ·) is given by (27).
Then, the trajectories of the DPS are uniformly bounded in
X×R

n×m ×R
m×m ×H×R, and limt→∞ ‖xN(t)−xr(t)‖X = 0,

uniformly in t0 ≥ 0.
Proof: To prove this result, let λ̃(t) � ‖f ‖H − λ̂(t), and

consider the Lyapunov function candidate V(eN, α̃, β̃, λ̃) =
V(eN, α̃, β̃) +

〈
λ̃, �−1

λ λ̃
〉

R

, where V(·) is given by (20). Thus,
by proceeding as in the proof of Theorem 1, we obtain that

V̇(t) = −〈eN(t), QeN(t)〉Rn

+ 2
〈
BTPeN(t), ExN (t)(I − �N)f

〉
R

+ 2
〈
BTPeN(t), vN

(
xN(t), eN(t), ‖f‖H

)〉
R

− 2

〈
m∑

i=1

�KN,ii(xN(t), xN(t))|(BTPeN(t)
)

i|, λ̃N(t)

〉

R

− 2
〈
λ̃N(t), �−1

λ
˙̂
λN(t)

〉

R

, t ≥ t0 (29)

where V(t) = V(eN(t), α̃(t), β̃(t), λ̃(t)) for brevity. Thus,
by proceeding as in Theorem 2, we deduce that V̇(t) ≤
−〈eN(t), QeN(t)〉Rn , t ≥ t0, and the result follows applying
Barbalat’s lemma.

The adaptive laws (12)–(14) and (28) do not assure con-
vergence of the adaptive gains to their unknown counterparts.
For example, λ̂N(·) is not designed to converge to ‖f ‖H. This
result can be attained by imposing some form of persistently
exciting input, which is left for future works.

IV. NUMERICAL EXAMPLE

The numerical simulations presented in this section apply
the adaptive control system presented by Theorem 3 with
the deadzone operator in the adaptive laws (12)–(14). These
simulations concern the plant model

[
ẋ1(t)
ẋ2(t)

]

=
[

0 1
−1 3

][
x1(t)
x2(t)

]

+
[

0
1

][
(u(t) + 3x2

1(t)x2(t)
]
,

x(0) = [2.75,−0.75]T, t ≥ 0, (30)

which captures a forced Van der Pol oscillator. Note that since
the nonlinearity is polynomial, its restriction to any compact
set contained in R

2 is contained in the vector-valued native
spaces used in this letter when they are restricted to the same
set. The reference model (2) is characterized by

Ar =
[

0 1
−100 −13

]

, Br =
[

0
100

]

,

r(t) = 2 cos t, and xr(0) = [2, 0]T. The algebraic Lyapunov
equation is solved for Q = I2. The adaptive rates in (12)–(14)
and (28) are �α = 102 ·I2 �β = 102, �f = 105, and �λ = 106,
and the initial conditions are α̂(0) = 0, β̂(0) = 0, f̂N(0) = 0,
and λ̂N(0) = 1000. The RKHS is generated by the exponential
kernel function K(x, y) = exp(−(x−y)2/2l), (x, y) ∈ R, where
the hyperparameter l = 1 sets the width of the kernel function.
We set N = 16, and evenly distributed the 16 basis centers
along the circle formed by the reference trajectory xref(·) at
steady-state.
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Fig. 1. A combined plot that shows the difference in the norm of the
tracking error and the controller effort between the classical and RKHS
adaptive bounding controller. Note that the red line in the tracking error
plot is the deadzone bound used for both controllers. The value of the
deadzone is 0.1.

We compare the proposed approach to the classical
adaptive controller with an error bounding term discussed
in [2, Ch. 4, 6], for which

uc(t) = α̂T
c (t)x(t) + β̂T

c (t)r(t) + vc(e, t), t ≥ t0, (31)

where α̂c(·) and β̂c(·) verify (12) and (13). The bounding term
is defined as vc(e, t) = −sign(BTPe) f , where f ≥ ‖f̂ ‖L∞(�)

captures a user-defined upper bound on the infinity-norm on
the uncertainty f . For this example, ‖f ‖L∞(�) ≤ 12, and, to
consider conservative assumptions, we set f = 120.

Figure 1 shows the norm of the tracking error and the
L2-norm of the control effort obtained employing the results
of Theorem 3 and those in [2, Ch. 4, 6]. The transient
performance of both methods is indistinguishable. In the
steady-state regime, the proposed RKHS adaptive bounding
control technique provides a trajectory tracking error compara-
ble to that of classical bounding control. However, the L2-norm
of the control input shows that the proposed system requires
less effort. The classical approach in [2, Ch. 4, 6] shows an
increasing control effort. The controller effort at each time t
is almost an order of magnitude smaller than that of simple
error bounding control during the stead-state regime. Using
both methods, the trajectory tracking error shows chattering
due to the signum function.

As the upper bound f on the functional uncertainty
decreases, chattering becomes more enhanced for the adaptive
method shown in [2, Ch. 4, 6] since the control law becomes
more aggressive for the same levels of performance. The
proposed adaptive control system does not require information
on the functional uncertainty and does not show this effect.
It can be shown that the tracking error decreases as N
increases, in accordance with the theorems. This has been
reported elsewhere by the authors, see [4], [18]. However, the
computational time increases with N as well.

Thus, the proposed RKHS adaptive bounding control
requires less information about the system, guarantees con-
vergence over a nonparametric uncertainty class in H, and
does not require upper bounds on the uncertainty. Future work
involve studying the trade-offs between the size of the uncer-
tainty class, the selection of K and H, the number of centers
N, numerical conditioning and sensitivity due to factorization
of KN , and the noise on the controller performance.

V. CONCLUSION

This letter presented three MRAC systems for plants
affected by matched and parametric uncertainties, and whose

nonlinear functional uncertainties are known to lie in an
RKHS of vector-valued functions defined in terms of an
operator-kernel. All the implementable control schemes can
be understood as approximations of the limiting DPS, which
contains a learning law that is a PDE for the functional gains.
These adaptive control systems give performance guarantees
that hold over classes of the functional uncertainties that
generally lie in infinite-dimensional spaces. Future works
involve higher-order variable structure systems to design the
compensator and prevent chattering in the control input.
Furthermore, we will investigate the merge of these results to
RKHS-based methods for nonlinearity reconstruction [7].

APPENDIX

To state the next result, let δ ∈ (−∞, 1], �δ � {f ∈
D : ‖�Nf ‖H < δ} and ∂�δ � {f ∈ D : ‖�Nf ‖H = δ}.

Theorem 4: Consider the convex projection operator
Proj : H × H → H. Then,

(fb − fi,Proj(fb, fd) − fd)H ≤ 0 (32)

for all fi ∈ �δ , fb ∈ ∂�δ , and fd ∈ H.
Proof: This result follows by extending [1, Lemma 11.3]

to infinite-dimensional Hilbert spaces, and is omitted for
brevity.
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